PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

Vesicle-vesicle adhesion by mobile lock-and-key molecules: Debye-¢kel theory
and Monte Carlo simulation
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Adhesion between cells is due to formation of weak, reversible chemical bonds between “lock” and “key”
molecules imbedded in the cell surfaces. In this paper we present a theory for cell adhesion that extends the
well-known Bell model of noninteracting adhesion molecules to include the cell-surface mediated elastic
coupling between the molecules. We show that the statistical mechanics of this many-body problem can be
mapped onto that of the two-dimensional Coulomb plasma with attractive forces. Using this mapping we find
the following results(i) the ideal-mixing state assumed by Bell and co-worK&sience200, 618 (1979;

Biophys. J.45, 1051(1984] is unstable against migration of adhesion molecules to the rim of the adhesion
disk in agreement with experimental observations &@ndloss of adhesion is generally preceded by the
collapse of the adhesion disk into a “stress-focused” state with enhanced adhesive strength.
[S1063-651X%98)08901-9

PACS numbdis): 87.22.Nf, 87.15.Kg

I. INTRODUCTION in the range 1K;T—20kgT [1]. This is a sensible range for
“signaling” molecules, from a design perspective, since mo-
Cell-cell recognition and adhesion through cellular adhedecular bonds of strength less thigT would not withstand
sion molecules is a fundamental process in biology, centrahermal fluctuations, while chemical bonds with an energy
to embryological development, tissue stability, and immu-much greater thakgT would be too “costly” to removd9].
nology. Great progress has been made in the isolation, stru@ypical cell-cell adhesion involves of order %010* adhe-
ture determination, and biochemistry of adhesive proteinsion molecules, so the total adhesion energy between two
and of molecular recognition by proteins in general. In thecells is substantial. Cell adhesion thus should be described
immune system, for example, the molecular basis oftatistically The cooperative effect of many weak molecular
antibody-antigen recognition is the interaction between thdonds collectively creates a strong adhesion.
membrane-bound immunoglobifig) molecules of leuko- A major part of our physical understanding of cell-cell
cytes(and lymphocyteswith foreign molecules, such as li- adhesion comes from a model developed by Bell and co-
popolysaccharides attached to bacterial membrghedhe  workers[10]. The Bell model describes cell adhesion as the
molecular basis for cell-cell recognition during embryologi- competition between two opposing mechanisms. First, there
cal developmenii2] is the homophilic binding of membrane- is a generic repulsion between the cells due to the osmotic
bound cellular adhesion molecule§CAMs) such as pressure of the membrane lipo-polysachhariftes glyco-
N-CAMs, P-CAMs, and cadherins. calix) that are squeezed between the cell surfaces. The range
The physical characterization of bioadhesion is attractingf this repulsion is about 500—1000 A. This repulsion then
increasing interest, but there remain significant obstaclexompetes with the above-mentioned specific bonding be-
The difficulties stem from the fact that, on the one hand, théween lock-and-key molecules. Pure phospholipid bilayers
interaction between a particular pair of “lock-and-key” mol- containing neither lock-and-key molecules nor lipopolysach-
ecules is far from simple, depending as it does on the detailsarides interact through a combination of van der Waals at-
of the molecular architecture, while, on the other hand, adtraction and double-layer electrostatic repulsion. This leads
hesion molecules are embedded in a cell membrane and frés an adhesion energy of ordesT/(50 A?) [11]. This non-
quently attached to the cytoskeletwhich can transmit sig- specific adhesion, which is undesirable, is prevented by the
nals from the adhesion moleculé¢8]). Certain important glycocalix repulsion, while the lock-and-key molecules al-
features are nonetheless becoming clear. Force measulews for a more refined regulation of the adhesion process.
ments between adhesion molecules by atomic force micros- Bell and co-workerd10] treated the lock-and-key mol-
copy [4], the force boX5], and other experimen{$] indi-  ecules as an idedl.e., noninteractingtwo-dimensional re-
cate that forces of order 50—200 pN are required to break thactive solution where reactants(for lock) andK (for key)
chemical bonds between typical adhesion molecules. Thiare in chemical equilibrium with the reaction produdeld
fracture force, however, is sensitively dependent on the ratgo L+ K=LK. This assumption allowed them to compute
at which the force is applief7]. Equilibrium binding ener-  an adhesion free ener@y. Once the adhesion free energy is
gies (Eg) measured from chemical equilibrium constants areknown one can determine whether or not cells adhere as well
of order XKgT for selectins and their sugar liganf8], but  as the shape of adhering cells using the continuum elastic
considerably higher for integrins. For Ig molecules, they areheory of cell membrangd 2]. Continuum theory relates the
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contact angle of a cell adhering to a substrate to the adhesion 'y .

free energy and the tension of the cell wall through Young's P |

law, borrowed from the theory of wetting.3]. The results |

appear to be confirmed by micropipette studies of cell adhe- i

sion [14]. In addition, continuum theory also predicts the i

suppression of thermal shape fluctuatigd$] in strongly p.(coll) ; D)

adhering cells, which has been confirmed experimentally T (frTacture)

[16]. From the viewpoint of a physical description, the Bell POIS et T

model is quite attractive. As discussed in more detail in Sec. /] ,

1, it allows us to include the biochemical complexity of Stress- (ez/f ;L,) Coupling

protein-protein recognition through a small number of mea- Focd ?

surable quantities from which we can deduce the effective k TAR? Y

adhesion strength. It also can be extended to include dy-

namic processedl7]. FIG. 1. Phase diagram with the glycocalix pressure angthe
There are nevertheless experimental observations that afgnsion. The heavy line indicates the collapse of the disk. The

pear to be in disagreement with the model. Studies of thgouble line is the threshold for loss of adhesioy(y). The hori-

adhesion ofT cells to target cells by Tozeren, Sung, and zontal dashed line is the threshold pressure of the Bell model.

Chien[18] revealed that the adhesion disk connecting the ) o

cells isinhomogeneouwith adhesion molecules migrating to arbitrarily small values of the coupling constafithis is only

the rim of the disk. Similar phenomena were also reported byfue in the thermodynamic limit of many adhesion mol-

Chen, Helm, and Israelachevi[ll9]. Numerical simulations ecules. For a finite number of adhesion molecules, there is a

of plate adhesion by polymef20] show, in detail, that when small range where the uniform state is _stable. In_ Sec. V we

the plates are pulled apart, the adhesive layer decompos@BOV_V th_e result of a Monte Carlo S|r_nu_lat|on. We find that the

into stress-focused regions with h|gher concentration of addlstrlbutlon of adhesion molecules is indeed |nh0mogeneous

hesion molecules and cavities with low concentrationsWith the adhesion molecules collecting at the rim of the ad-

Eventually, only a few bridges are left and cavities form hesion disk. As we increase the coupling constant, we find
everywhere. that the adhesion molecules collapse into a single patch when
It is the basic premise of this paper that the Bell model isthe dimgnsionless coupli_ng constant exceeds a value of or_der
sound but that the ideal-solution approximation is invalid.One, which may be the singularity in the free energy found in
The assumption of weak interaction between adhesion mofSec. IV. Finally, in Sec. VI we construct the adhesion phase
ecules seems to be quite reasonable at first sight. The me&#figram shown in Fig. 1, our main result. The horizontal axis
spacing between the 4910* adhesion molecules in agm ¥ in Fig. 1is the tension _of_ the cell surface and the vertical
adhesion disk is about 100 A, long enough to exclude direc@Xis is the glycocalix disjoined pressupe The horizontal
interactions as a significant effect. Braun and co-workerglotted line is the critical pressurg!” for cell separation
[21] nevertheless suggested that adhesion molecules do ifeund from the Bell model with no interaction.
teract, butindirectly. They proposed that cell-cell repulsion ~ The part of the phase diagram labeled “weak coupling”
by the glycocalix generates a long-range attraction betweegorresponds to an inhomogeneous adhesion disk with adhe-
adhesion moleculespediated by the cell membrandheo-  sion molecules mostly distributed around the rim. Increasing
retical analysis of the stresses in adhering membrg22ls P leads to fracture of adhesion at the double line labeled
confirmed this concept and predicted an attractive potentiadr(y). For largey, pr(y) approaches the fracture pressure
between adhesion molecules that increases with spacasg  p{” of the noninteracting Bell model. As we redugewe
Inr. In this paper we generalize the Bell model to include thereach the boundary markex{y), where the adhesion mol-
indirect interaction between adhesion molecules. The statiscules collapse into a single cluster. The adhesive strength of
tical properties of this many-body system are studied by dhe single clusterp;(coll), exceeds the ideal solution value
combination of statistical-mechanics methods and Montg{?) by a considerable amount provided the lock-and-key

Carlo simulation. Some of the mathematical features of thisinding energyEg exceedkgT significantly. We conclude

model were presented earlier in a brief red@3]. with a discussion of the relevance of our results.
We define our model in Sec. I, where we also review the
continuum theory of adhesion. In Sec. Ill we restrict our- Il. ADHESION HAMILTONIAN

selves to noninteracting adhesion molecules. In that limit we

reproduce the ideal-solution theory of Bell and co-workers We construct in this section an effective Hamiltonian to
[10]. In Sec. IV we include the correlations between the ad-describe the adhesion between two cells with mobile “lock”
hesion molecules and show that this leads to a many-bodfL) molecules embedded in one cell and mobile “key)(
problem equivalent to a two-dimensioné?D) plasma of molecules in the other ce[R4]. The cells are treated in a
“charges” interacting with an attractive logarithmic poten- simplified way: as two vesicle§.e., closed surfactant bilay-
tial in a neutralizing background. We discuss the generaér9 with embedded adhesion molecules. Our model is pic-
structure of the free energy and demonstrate that it has tred in Fig. 2. In Fig. 2a) we show two simplified cells
singularity as we increase the coupling constant. We theadhering by lock-and-kefL K) molecules at a small circular
borrow a method from plasma physics, specifically Debye-contact patch, which is shown in enlarged cross section in
Huckel theory, to show that the state of uniform mixing of Fig. 2(b). In the enlargement, we see bound lock-and-key
adhesion molecules implicit in the Bell modeluisstable for  pairs separated by areas where the membranes “billow” out
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H:He|+ Hg|yc+ HLK . (1)
glycocalyx

The first termHg, is the continuum elastic energy of the
vesicle,Hgy. is the glycocalyx contribution, anH  is the
Hamiltonian of the lock-and-key adhesion molecules. We
will discuss the three terms separately in the following sub-
sections.

A. Elastic energy: Continuum theory

The elastic energy of ésymmetrig bilayer vesicle is, in
the simplest continuum theof®5], given by

NN
el_2 “ surfac Rl R2

In the first term,« is the Helfrich bending energitypically

of order 1&zT-10KkgT) andR;,R, are the principal radii

of curvature. In the second term, is the tension of the
vesicle andA its surface area. For the third teri, is the
osmotic pressure difference between the vesicle's interior
and exterior and/ denotes the volume. For a nonadhering
vesicle,Hg is minimized byR;=R,=R, i.e., a sphere, with
I[1=2vIR (Laplace’s law.

Upon adhering together, the vesicles may deform, in
which case they take th@pproximate shape oftruncated
spheresas shown in Fig. @). The new vesicle radius will be
calledR’ and the area of contaetu?, with u the radius of
the contact disk. Cells maintain their volume, so we will
assume that the volum¥ is fixed during the process of
adhesion. However, because of the possibility of the smooth-
ing of the ruffles in the cell surface, generated by the tension
of the cytoskeleton, the effective surface area of a cell is not
fixed. We can quantify this by noting that it follows from
geometrical considerations that

2
+yA—TIV. )

(a)

I glycocalyx
pressure (p)

4

u
for u/R<1, while the ared increases by an amount

AT 4

TR @

(b) 2ycos8+G =2y

Using Egs.(3) and (4), one finds that the elastic energy
FIG. 2. (8) Two model cells adhering by lock-and-key adhesion. Increases by an amount
The upper vesicle only carries lockk) the lower only keysK).
The adhesion complexes are denotedl. The radius of the adhe- AH.o~ T U
sion disk isu, the vesicle radius iR’, and the contact angle be- e Y R?
tween the two vesicles i8. The hatched coat on each cell is the
glycocalix (lipo-polysachharides embedded in the membrares  assumingi/R<1. The first term represents the work done by
The repulsive pressure of the glycocalyx produces billowing out ofthe tensiony as the vesicle surface area increasesAly,
the membrane in between LK sites. This in turn leads to attractiomrhe second term is the reduction in bending energy due to
and stress focusing. The contact anglis determined by Young's — flattening the contact disk. The final term gives the energy
law as shown. cost of the high degree of bending that occurs at the rim of
the adhesion disk. It has the form of a line energy with line
due to repulsive pressure from the glycocalyx. We assuméensionr. A functional minimization of Eq(2) shows[12]
that lock-and-key pairs force only a modest local compresthat, within continuum theory,
sion of the glycocalyx.
We now write the adhesion Hamiltonian as a sum of three 3 \/E
parts 4 ’

4 U2
—TK ¥+27TU7', (5)

(6)
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with G the adhesive energy per unit area of the contact disk. ar,
As a simple illustration of Eq(5), we add an adhesive TRG
energy— Gmu? to AH, and obtain the following mean-field,
continuum expression for the free energy: 0.0003
w U4 0.0002 3
AFon(U)=—GmU?+ = y =5 + 27U, (7) a
2 R 0.0001
where we assume/R2<G, which is the case under all prac- 3 553
. .. . . . 0.03 .04 0.05
tical conditions. We ploiAF,,(u) for typical parameters in 20,0001
Fig. 3. There are, in general, two local minima &F (u): u
one atu=0 and one at finitel. A first-order phase transition ~0.0002 R
occurs nealG=0 when the global minimum shifts from
=0 to finiteu. We will refer to theu=0 minimum as “mi-
croadhesion,” which itself describes two possible scenarios:
either (i) only a small number of adhesion molecules are
involved in the binding with the two adhering vesicles that AF_«;-:
are essentially spherical ¢i) there is no adhesion at all. A &G
minimum of AF.,.(u) at finite u represents “collective ad-
hesion” involving many adhesion molecules. The collective ©.0002s 3b
adhesion minimum oAF(u) obeys, for smallG/y, 0.0002
(G)ll2 0.00015
uF=R|—| . (8)
Y 0.0001
An alternative way to arrive at E@8) is shown in Fig. 2. In 0.00005
equilibrium, the force per unit length on the rim of the ad-
hesion disk must vanish. This is the case if 0.01  0.02 0.03 0.04 0.05
G+2vy cosf=2y, with 0 the contact anglebetween the u
cells, measured from the contact plane. This is just Young'’s R
law for three-phase contact lingk3]. Figure Za) shows that
6= (Gl v)Y?for small 6, together withd=u/R leading to Eq. AF
(8). The collective adhesion minimum of the free energy thus i
corresponds to Young's law.
The point where the two minima are degenerate can be 4 gg04
expressed in terms of the vesicle skeCollective adhesion
should occur when the vesicle radius exceeds a critical value 0.0003 3¢
given approximately by
0.0002
K 1/2
Rc2(€> . 9 0.0001
Vesicles with radiiR<R. will be spherical(and at best mi- 6.01 0.0z 0.03  0.04 _ 0.05
croadherent while those withR>R; will have a finite ad- u
hesion disk that obeys E¢B). One of the aims of this paper R

is to find out whether this simple “mean-field” picture re-
mains valid if we allow for the internal degrees of freedom
of adhesion.

FIG. 3. Continuum theory of adhesion enerd¥.,,{u) as a

function of the radiuss of the adhesion diskia) shows a finiteu

global minimum.(b) As G, the adhesion energy, decreases the
global minimum shifts tou=0 at a critical point. The parameter
values are as follows. The dimensionless adhesion ene@yy 2
Our next step is to construct the Hamiltonian for the lockequals(a) 2x 1073, (b) 6.7x107%, and(c) 5X 10" *. The dimen-
and key moleculegH, ¢ of Eq. (1)]. Following Bell and sionless line tension 2RG=0.01 for all three cases.
co-workers[10], we assume that the molecular bonds are
fully reversible and that the bound adhesion complexes, likeegion, whileN—M unbound adhesion molecules roam each
the unbound adhesion molecules, are mobile within the twovesicle. We further assume the LK molecules to have an
dimensional contact area. We assume that each adheringfinitely repulsive hard core of radiug, . The lock-and-key
vesicle possesses adhesion molecules in total, with one Hamiltonian will contain three partgi) the binding energy
vesicle containing onl)t molecules and one onlik mol-  (—MEg) for the LK complexes(ii) the hard-core repul-
ecules. Thee andK molecules can bond, forming LK com- sions, andiii) the energy cost of deforming the membranes
plexes, of quantityM and chemical binding energifg.  while maintaining the proper LK “pinning” separations.
Hence we havi/ freely mobile LK molecules in the contact This last term is due to the fact that the lock-and-key com-

B. Lock-and-key adhesion
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plexes pin the two membranes togetheze Fig. 2)], caus- .

ing compression dimples in the glycocalyx at these pinning Hgiyc= Pg|ch d?r[hgy.—h(r)], (15
sites. Given the tension in the membranes, then, one can

visualize the contact region as a dimpled seat cushion, witlvith pgy.=zksT¢/hgy.. This would seem to be a naive ap-

mobile dimples. proximation: hg, really is only themeanheight of the oli-

We leth(r) represent the spacing between the two memgosachharides, whereas the concentration profile of a poly-
branes in the contact disk and let the g{éi}, with i electrolyte brush is a smoothly varying function of the
=1,...,M denote the locations of the LK complexes within distance from the anchored ends. To see why the approxima-
the adhesion disk. The pinning constraints are thus tion is valid, first note that we shall be concerned with the

R biologically relevant cask, x=hg., i.e., theL andK mol-
h(R)=hi, i=1,....M, (10) ecules are comparable in size to the oligosachharides. Now

let V(h) be the full intermembrane repulsive energy per unit
with h « the fixed spacing at the LK sites. We account forarea generated by the glycocalyx, withthe membrane-
the elastic energy cost of the dimples by adding to themembrane spacing. The functiaf(h) surely is monotoni-
Hamiltonian cally decreasing witth, soV’(h)<O0. If we are only inter-

ested in the range=hg,.=h « , we can always expand

1 2. (O h)2
zyf d°r(Vh)s, (11) V(h)~V(hgye) +(h=hgy) V' (hgyo) +---,  (16)

where the integral multiplying the tensiopis the excess Wwith V'(hg,)<O. Integrating over the adhesion disk again

area of the dimples. gives Eq.(15) if we identify pgy.=—V'(hgy). Note that
We must also include a term that prevents the complexegy,c has the dimensions of pressure. It is the repulsive force

of finite molecular diametea,, from overlapping. This will  per unit area exerted on the cell surface and we will refer to

consist of standard hard-core potentials it as the disjoining pressure. Equati@tb) is thus generally
. applicable when the LK link produces only a mild local de-
s o for |R;— Rj|<a0 formation of the glycocalyx. If the LK links are significantly
V(|Ri_Ri|): 0 for |§i_§j|>ao_ (12 shorter thanhg,., then nonlinear terms would have to be

included in Eq.(16).
Putting all the terms together, we can explicitly write the LK~ We finally are in a position to write down the full Hamil-

Hamiltonian as tonian
. . 1 o = o 1 N
H.k[h]=—-MEg+ >, V(|Ri—Rj|)+%yJ d?r(Vh)?, H=Z | dTr(Vh)™+ 3 ;] V(Ri—Rj))—MEg
i<j
(13 Ut
2 —h(r —

where the integral is to be performed over the contact disk +pg'y°f drfhgye—h(r)]+ 27 EZ+Z7TUT'
only. 17

C. Glycocalyx The integrals here are constrained by the pinning condition

The final contribution to the lock-and-key Hamiltonian is (10.
the compression energy of the glycocalyx. The glycocalyx is
essentially a “brush” of charged macromolecul@digosa- IIl. IDEAL SOLUTION THEORY
chharide¥ extending out of the membranes. The portions of We can view the lock-and-key description of adhesion,

the membranes in the contact disk are repelled from ongner conditions of thermal equilibrium, as oneabiemical
another due to osmotic pressure produced by confinement @b, ilinrium [10]. A reservoir of reagents (the first vesicle
the charged macromolecules and their counterions inside the i, contact with another reservoir of reagekitgthe second
adhesion disk. The thicknesg, is typically of order 100 \ggiclg. In the region of contact, the's andK’s can react

300 A. ) reversibly,
The osmotic pressure of a compressed polyelectrolyte

brush is primarily due to the counterions and obeys L+K=LK, (18)

't Hooft's law IT=nkgT, wheren is the concentration of

counterions. For the glycocalyx, forming a productLK and releasing a binding enerdg .
The area concentrations of reagefity and[K] and of re-

_Ze action product§ LK] must then obey the equilibrium theory
M= — kgT, (14 ) ; X
h of ideal chemical solutions
with ¢ the area density of charged macromoleculeshe [LK] KT 19
number of charges per macromolecule, anthe intermem- [L][K] ed 1), (19)

brane spacing, assumed here to be only slightly less than the
glycocalyx thickness$y,.. For a modestly compressed gly- where K(T)*expEg/ksT) is the temperature-dependent
cocaly, it is then easy to show that equilibrium constantin chemical literatureEg is referred to
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as the “standard free-energy change” of the reagtidmis  deduced earlier from continuum thedig. (7)], except that
relation assumes that, apart from the chemical readfimn  here we have an explicit form for the adhesion free-energy
(18)], the reagents and products do not interact. In the notadensityG.

tion of Sec. II,[LK]=[M]=M/mu?. If M<N, then[L] The discussion of Sec. Il remains valid and we expect
=[K]=[N]=N/47R?. In that case, Eq(19) reduces to again aweak first-order separation transition ne@js=0 if
[M]=[N]2Keq. we decrease the binding energy or increase the disjoining

The free energAF computed from the adhesion Hamil- pressurep. Note that the adhesion free enerGys is very
tonianH of Sec. Il must reproduce the ideal solution result,sensitive todEz because of the exponential factor. Changes in
if we drop the LK-LK interactions. We do this by setting adhesion behavior thus can be regulated efficiently by alter-

h(r)=h,x everywhere, i.e., by assuming a flat profile for theing Eg (for example, through changes in tpél level). We
membrane spacing, thus forbidding any dimples and anyvill later construct a phase diagram for adhesion in thp
elastic coupling. The glycocalix is then compressed by arPlane. For the ideal-solution theory, this phase diagram is
amounthgy.—hyx . This yields an “ideal-solution” Hamil- ~ Very simple: The boundary _between adhesion anq_fractgre is
tonian set byG,s=0. In the y-p, this corresponds to a critical dis-
joining pressure

u4
?.

v
HIS: -M EB+ p(hg|yc_ hLK)7TU2+ 2muT+ E Y
(20) D(TO):kBT[N]Z(

: (25

a’ ) 2 oEslkgT
a hglyc_ hLK

The ideal-solution free energ\Afs), then, will include the L ) _ )
internal energyE,s=H s along with the appropriate entropic which is independent of the vesicle tensipnCorrecting for

terms for the three ideal solutiotef L's, K's, andLK's) the fact that this is really a weak first-order transition at finite
’ ' G5 does not materially alter this result. Ideal-solution theory
AF g(U,M)=—MEg+p(hgye— h ) mU2+ 2 ur thus agrees with the earlier continuum arguments, but gives

more precise information regarding the adhesion internal de-

x u ) grees of freedom.
+t5 vgetkeT|MIn| —7a% =M From the physical viewpoint, Eq24) is very attractive.
The complexity of thousands of mobile adhesion molecules,
N-M each of which has a nontrivial architecture, is replaced by a
— 12| _ _ y
+2(N M)In( anRZ 2 2(N M)]' single numbeiG5, which depends on a limited number of

parameterg:N], Eg, a’%a, p, andAh=hgy.—h g, which

at least in principle can be accessed experimentally. As dis-
cussed in Sec. VII, if we put in reasonable values for these
parameters foll cell adhesion, one finds values f@rin the
range 0.1-1 dyn/cm, which agrees well with micropipette
studies ofT cell adhesior{18]. Nevertheless, we have seen
in the Introduction that adhesive bonds under stress develop
a heterogeneous structure, which requires a more detailed
analysis including correlations between adhesion molecules.
2 We will address this in the next section.

: (22

(21)

Herea? anda’? are molecular size areas. When computing
the adhesion free energy per unit a®a we must always
subtract fromAF the free energy RksT In(Na'%/e?47R?) of
separated vesicles. Minimization afg(u,M) with respect

to M indeed confirms the ideal-solution result. Explicitly, the
equilibrium valueM g for the number of LK molecules is

a72
Mg~ WUZ[N]Ze(EB/kBT)(?

IV. CORRELATION ENERGY

with a'?/a representative of the molecular-size range of the | tis section we will derive the indirect interactions oc-

LK |nteract|o_n andEg ass_umed to be of ordégT. ) curring among the bound LK complexes. The interactions

By replacingM by Ms in Eq. (21), we can now write the  5re gue to the interplay between membrane tension and gly-
free energyAF,s as a function of the single variable,  c,calyx pressure, as first proposed by Braun and co-workers.
which will enable a comparison with our results from the \ye il use the free energy computed in this section to con-
simple continuum model of Sec. II: struct a phase diagram in Sec. V.

4
s u
AFg(u,M=Mg)=—Ggmu’+ SYRET 2murt, (23 A. Attractive Coulomb plasma

In our model the LK molecules couple to each other in
where two ways:directly, as described by the short-range pair po-
5 tentiaIsV(|§i—ﬁj|) in Eq. (17), andindirectly, mediated by
€/l _p(h —h ), (24) the membrane. Under typlca.l conditions, the adhesion molj
glye  TILK ecules have area concentrations that are low enough for di-
rect interactions to be very weak. In the remainder of this
where we have dropped the subscript in the disjoining pressection, therefore, we focus on the long-range, indirect cou-
sure pgyc, a convention followed for the remainder of the pling, although we will see later that the direct interaction
paper. We have writteAF g in the same form as th&F .,  actually plays a key role.

12

a
Gis= kBT[N]Z(?



970 DANIEL M. ZUCKERMAN AND ROBIJIN F. BRUINSMA 57

The indirect coupling is generated by the combined effect H¥ = — L(h—h k) mu2+ p(hgye— hyg ) mU2
of the first and fourth terms in Eq17) (i.e., the elastic ten- " o

sion and the disjoined pressur®Ve denote the sum of these -
two termsHp: == %YJ d?r(Vh*)2+p(hgyc—hi)mu?, (32

HintE%')’f d?r(Vh)?+ pf d?r[hg,.—h(r)]. (26)  where we denoted the mean spacinchbyPursuing again the
electrostatic analoggh« ¢, where¢ is the electrostatic po-

' . I . . _tentia), we see that the first term ¢}, indeed is like the
We can find the mechanical equilibrium spacing profile o 2 13 2 .
electrostatic field energyd-r(V¢)<, except for a crucial

h*(F) by minimizingljim with respect tm(F) while obeying difference in signThe “Coulomb” interaction between two
the M constraintsh(R;)=h k. This is done by the method |ixe charges of our systerfsay, u;/y and u,/7y) will thus

of Lagrange multipliers: We minimize be attractive
M We now derive the explicit dependence e, on {R;}.
_ > The first step is to solve Eq28) for the equilibrium mem-
W=Hin+ 2, uih(R) 27 prane shape:
. . . . . M > 2
and determine thg; by imposing theM constraints. Setting - P, Mi [r—R|
W/ sh=0 gives h*(r)z—ﬂr T2 |2y In| ——+ho, (33
M
- - = with ay a molecular cutoff length and, a position-
YVP* ()= —p+ 3, a1 —Ry). . " J o @ POSHO
=1 independent(but {R;} dependent constant of integration.

The pinning constraints fix the set of;}:
The positions{R;} of the LK molecules vary with the con-

figuration, which implies that thg; andh* are also configu- p -, M M |§|— I§J|
ration dependent. == R+ J; 2y " a0 | ho
We assume as a boundary condition on the solution of this
differential equation tha(r) is flat at the edge of the adhe- (i=1,....M). (34
sion disk. Integrating Eq.28) over the disk area and apply-
ing Gauss’s theorem then gives It is easy to show that for a homogeneous distribution of a

large number charges, the Lagrange multipliers are all equal:
p 1 M mi= m. For a thermodynamic state with only weak concen-
M] = Z Li= L. (290  tration fluctuations, théu;} are approximately equal as well.
=1 We will assumeu; = u for the remainder of the calculation
and later test this assumption numerically. Note that under

That is, the mean of th® Lagrange multipliers is fixed by this condition, the constrainﬂs(ﬁi)zhLK are obeyecnly

the glycocalyx pressurp and the LK concentratioﬁM]. on average We will discuss the validity of this approxima-
Note now the similarity between ER8) and the Poisson tion in Sec. VI.

equation for a set of_ like charges in_ a neutralizing back- Inserting Eqgs.(33) and (28) into Eq. (32) gives us the
9“3‘4?‘0'- We can identify as the po}entlal .Of a plasma M final form forH},; we show only the explicit dependence on
positive chargesof magnitudew/y) in a uniform, neutraliz- the LK locations:

ing background of negative charge. Equati@d), then, ef-
fectively imposes the overall charge neutrality. There is,
however, an important difference between the present model
and an ordinary one-component Coulomb plasma, which is
made clear after a sequence of steps. First, using partial in- L
tegration and the boundary conditions, it follows that w? In( IR —R;]

M
> > pu >
Hﬁn(Rlv---iRM):__‘]_ 2 (Ri)2
Y i=1

+A, (35

4y (7 0

yJ dzr(ﬁh*)2=—yf d?r h*V2h*. (30) A
where A accounts for theR;-independent terms. The first
term in this many-body Hamiltonian represents a parabolic
single-particle potential that tends to push LK molecules to
the edge. The second term is a logarithndttractive pair
2 Sk \2_ 2, 1k 2 otential. Since the Coulomb interaction is indeed logarith-
yf dor(Vh®)"=- pf dr h* = phycmu’, (31 Fnic in two dimensions, this confirms our earlier intuitiogr]L To
make the electrostatic analogy more concrete, the dimension-
where we have also used the pinning constraii®. Fi- less coupling constant of this many-body Hamiltonian
nally, we insert Eq(31) into Eq.(26) to obtain the energy of w22 ykgT=p2l2wykg T[M]? can be denoted?/kgT.
the membrane shape in mechanical equilibrium: In terms ofq= /27y, we can writeH* as

Now, inserting Eq{(28) into this result gives
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2

2 M =\ 2 = =>
q Ri [IR—Rjl} 3 _ q
= — — 2 ! — g2M?2 P,=[M]| kgT+ —|. (41
H zle(u +qi§>:jln( u +8qM 2[ ] B 4
g2 ) This is the equation of state of adeal gaswith increased
— 5 M In| —J+p(hgy—huc) mu’, (36)  effective temperaturgT=kgT+q%/4. The free energy has
0 the general form of Eq40) only if the integral in Eq.(39)

The number of adhesion molecules is not fixed. Thisdral inerges. We expect a phase transition at a temperature
means that the contribution to the free energy generated b{c with

H* (R;,...,Ru), which we will call the correlation free en- "

ergy, must be computed in thgrand canonical ensemble kBTczi. (42
with a chemical potentialcontrolled byEg). In Secs. IV B

and IV C we will first discuss the simpler case of correlations
between LK molecules for a giveM, i.e., for a fixed num-
ber of adhesion molecules.

For q’/kgT=2, the free energy becomes highly sensitive to
the valuea, of the microscopic cutoff because of Eq88)
and(39), whereas fog?/kgT<2 it depends only logarithmi-
cally onag. In terms of the original variables, we can write

B. Free energy the equation of state fg8g%<2 as

The M-particle free energy associated with* is given 0?

by - _r
) Pop=kgT[M]+ 8y [M]’ (43
F=—kgT In{ =i— 11 f .. d?Re A while the phase transition should occur at
ap M!i=1 JIR|<uR-R|>ag
(37) p?

up to a trivial constant. From E@36) we see that the vari- 7y [M]

ablesﬁi enter in the dimensionless combinatii}n: ﬁi /u. In

terms of théi variables, the partition function takes the form V. DEBYE-HU CKEL THEORY

In the Bell model, it is assumed that the LK molecules are

_[u 2M [y | (Ba2M —(3/8)892M? 1 uniformly distributed over the adhesion disk. In this section,
Z= a_o a_o € M we will borrow a classical method of plasma physics, Debye-
" Huckel (DH) theory [26], to compute the correlation free
9= B89? -1 energy of the uniform state and simultaneously test the sta-
Xiﬂl fl - d7z ex > > |zl bility of this state. We will assume that the dimensionless
= z|<1|z-3|>ag/u i

coupling constanti?/kgT is small, so we are really doing a
) - - perturbation expansion around the ideal solution theory of
—pq .2>J In(|z—z]) |. (38 sec. IIl. Following DH theony[26], we start by placing an
LK molecule(sayi=1) at the origin and keep it fixed. We
Now take the thermodynamic limii—c, M—c, with ¢  NOW want to calculate the thermally averaged height profile
finite. If the integral (h(r)), surrounding the fixed charge. The functiain(r)),
will be assumed to obey the condition

Lkldzz g pa? InlZ] (39)

Qo

. - Iz
lim <h(r)>l_hLK+_7-ry In

5 o (45

exists, then we are allowed to set ttgmal) ratio ag/u to =20

zero in the second part of the pal’tition function. The free\Ne also will assume that, far from the Origin’ the Spacing

energy in that case has the form profile is flat and equal to the average spacing so
= q2 q2 i N _ —
= KeT In[MJad) + 7 In([Mad) + 17 T(M, Ba?), am (D)=, (49
(40)

with (h) the thermal average of the mean spacingThe

with T'(M,8g?) a dimensionless function. If there exists a first condition is the pinning constraint applied to the edge of

well-defined free energy per particle in the thermodynamiache LK complex plus the requirement that for=a, the

limit, then ' must be proportional tt/. height profile must be that of a single LK molecule. The
Suppose we keep the chargdixed. All the dependence second reflects the requirement that the effects of a molecule

of F on the system siza then enters through the LK con- at the origin will be screened at large distances. From Eg.

centrationfM]. We can then determine a “fixeqi* equa-  (28) we find that

tion of state from Eq(40). We define the 2D pressuRy=— _ _ _

&F/ﬂ(uzw)|q. From Eq.(40) we find YVh(r))=—p+p(r)+ud(r), (47
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with fast for distances large compared 40!, whereas in our
case they decay onl)/ as an oscillatory power law propor-

. Mo tional to coskr + ¢)/rt/2.
p(r)=u .22 o(r—Ry) (48 To determine the integration constadtsandB, we first
B note that
proportional to the thermally averaged density of LK mol- 2
ecules: the “charge density” of the screening cloud in the lim Ng(x)=— (In X+ yg—1In 2), (57)
electrostatics picture. Using E¢R9), the “charge neutral- x—0 &
ity” condition, we find a normalization condition fqs(r), with ye=0.577.... Euler's constant. To obey E@5) in the
limit xr<1, we thus must demand that in E&4)
f d?r p(r)
1 M
e — S B=—. 58
Now we assume that the thermally averaged LK density folNext we must demand tha(r)), is flat atr = u. This is the
lows the Boltzmann distribution case if
- . AJi(ku)+BN;(xu)=0. 59
p(F)=peAU(/keT (50) 1(kU) 1(kU) (59

. The complete solution fo(rh(F))l is then
whereAU(r) is the thermally averaged potential energy cost

of moving an LK molecule from infinity ta. On the basis of <h(F))1=<h_>+ Kad NO(Kr)_(M)JO(Kr)}_
our electrostatic analoggh— ¢ and w<—q), we would ex- 4y Ji(ku)
pect (60)
. - — The second term of Eq60) is the correction to the mean
AU =(h(r)1=(h)x. 51 spacing(h) introduced by the fixed charge at the origin. We

will examine this correction term, starting from the high-
temperature limit wherac—0 [see Eq.(56)]. If ku<1, we
can setly(«r)~1 sincer<u, while for Ny(«r) we can use
Eq. (57):

In the Appendix we show that this indeed is the right choice
The average density profile is then taken to be

- M - —
p(r)=p eXP{‘m[(NUM‘(W]}- (52) i L u
) (h(r))1%<h)+m[In(Kr)+yE—|n 2]+W

If we linearize the exponential in the expression fdr) (62
in the limit of high temperature and insert this into £47),

we obtain the inhomogeneous differential equation The correction term has a logarithmic profile similar to that

of a single, isolated LK molecule. Note though that for
pu _ xu—0 the correction term diverges so the applicability of

V2(h),= —<ﬁ>(<h>l—(h>). (53  perturbation theory is suspect. As we increase matters
Yee get even worse. Wheru approaches the first zesq=3.8

of the J; Bessel function, the correction term in E@O)

The general radially symmetric solution to E§3) is : .
g y sy H83) mathematically diverges. We must conclude that far

hY = AJ( k)4 BNa( k1) + h_, 54 =3.8, the uniform state is unstable. This is a very severe
(M o(KT) o(xT) () 64 constraint. Using Eq:56) we can write the unstable range as
where q> 7.2
T M (62
Kk=p([M]yksT) 12 (55) s M

Apparently, in the thermodynamic limNl —« the uniform
state is unstabléor any fixed valuef the coupling constant
a°/kgT. We will investigate in Sec. VI what happens for
®fiite values ofq?/kgT. It is, however, still useful to com-
pute the free energy using the DH method. This is done by

is an inverse length andly andN, are Bessel functions with
A and B integration constants. The quantikyis formally
analogous to the inverse Debye screening length. Thisis b
ter seen in the “electrostatic” language, where Esp) re-

d t -
vees 1o demanding thath(|r|=ag))1=h in Eqg. (60). This re-
21 M]9? quirement fixes the mean spacifig):
KP=——— (56)
kBT N Iu’ ,LL Nl(KU)
which is of the form of the usual definition of the Debye Ty Y Stk 63)

parameter. Note that for coupling constaqtéksT of order
one, k! is of order the LK-LK spacing. For theepulsive  Inserting Eq.(63) into Eq. (32) gives the internal energy
Coulomb plasma, however, correlations decay exponentiall;, = (H},):



EII"I
— 5 =P(hgye—hu) + 57— {In(xao>+yE In 2}
_ up [Ny(ku)
"8y (Jluu) ) (64

The second and third terms represent the contributids, o
from correlations. Note the divergence when=3.8. In
electrostatic language, we can write E8¢) as an energy per
particle:

Eine Q° 9? (1 [2mqg?
—=— |v|2+——| +ye—In2
M 4 n([ ]aO) 2 kBT Ye—In
2M@?
Nyl \/
! kT
(65)

m 2
—_—— q —’
2 [2Mg?
J
! kT

dropping the trivial term in Eq(64). Equation(65) has ex-
actly the right general form required by E0). Because
the last term depends explicitly dv, there is in general no

well-defined energy per particle in the thermodynamic limit,
another sign of the instability of the uniform state. However,

in the high-temperature limit, the last term in E®5) is
inversely proportional tdVM and it only contributes &on-
stantterm, of orderkgT, to E;,;, which can be dropped. In
the ku—0 limit we then find a well-defined correlation free
energy per unit area

Fm_ p* (1 [ P
wu?  4my[M] |2\ [M]ykgT

In2 !
+ve—In —E .
(66)

The complete DH free energy per unit afdgM ]) for fixed
M is then

p2

{(IMD)=keT[M]In([M]a) - gy |

ke T
prBaz[ ])
(67)

We will use Eq.(66) as the correlation free energy to study

the weak-coupling limit.

VI. NUMERICAL SIMULATIONS
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FIG. 4. Snapshots of a 25-particle Monte Carlo simulation. The
dimensionless coupling constagt/kgT equals(a) 0.0, (b) 0.11,
and(c) 0.15.

which the system had been allowed to equilibrate for 5000
sweeps(125 000 updatgs The particle positions in Figs.
4(a)-4(c) correspond to dimensionless coupling constants
e?/kgT (or u?2mkgT) equal to O[Fig. 4a@)], 0.11 [Fig.
4(b)], and 0.15Fig. 4(c)].

In Fig. 4(a) the particles assume random positions corre-
sponding to a dilute two-dimensional gas. In Figo)dve see
the effect of increased attraction: the LK molecules have a
tendency to cluster and some appear bound in pairs. Note
that the density of LK molecules is higher at the edge due to
the inverse parabolic single-particle potential of E85).
However, if we watch a particular molecule, it will wander
over the whole disk given sufficient time. Finally, in Fig.
4(c) a small increase in the coupling constant has led to total
collapse: All particles are collected into a single dense patch,
the stress-focused state. The cluster appears to be nearly im-
mobile and is located at the sample edge for reasons dis-
cussed above. We infer that there is a critical value for the
coupling constant, between 0.11 and 0.15, marking a phase
transition between an extended and a localized state of the
many-body system.

These results lead us to the following conclusions. For

We have preformed Monte Carlo numerical simulationssmall but finite values ofi>/kgT, the LK molecules explore

on the many-body HamiltoniaH?(R; ,...,Ry) of Eq. (35).
The aim of the numerical work was threefold). to examine

the adhesion disk, but the average concentration hasna
uniform profile [M](F), which is small at the center of the

the regime of finiteg?/kg T values that was not accessible by adhesion disk and large at the edge. This violates the basic

the DH method,(ii) to verify the predictions of the DH
method for the weak-coupling regime, afid) to examine

assumption of the perturbative DH theory. The collapse of
the adhesion molecules aroundkgT=0.15 appears to be

the validity of the assumption that we could set the Lagrangeonsistent with the theoretical prediction that fgf/kgT

multipliers u; to be equal tou.

Our first simulations were done with the values set to
u and the number of LK moleculdd fixed atM =25, in a
disk of fixed radiugcanonical ensembleWe used the stan-
dard Metropolis algorithm with small random updatesi-

=2, the free energy should be sensitively dependent on the
short-distance cutoffy, for the replusive potential. We do
not know, however, why the collapse happens already
around 0.15 rather than 2.

Next we allowed the number of adhesion molecleso

crostepsin the successive positions of the particles. Typicalvary. A given configuration oM particles on a disk of ra-

equilibrium configurations are shown in Figsag4(c) in

diusu was assigned the probability
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0.1
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Surface Tension y [kaT/pm?2]

FIG. 5. Result of Monte Carlo simulations with variable particle nunaerak coupling. The average adhesion disk radiuss shown
as a function of the tension. The lower dotted curve is the prediction of ideal solution tfigynode). The upper dashed curve includes
corrections from DH theory. The data markedcorrespond taj?/kgT=0. The deviations from ideal solution theory for largare due to
finite-size effects. The data markei correspond to simulations of the interacting case \pith6 X 10°kg T/ um®,

- 47R%/a’ 1?[ wu?la The grand canonical simulations consisted of up 1018’
PI{R;},M ,U]=ZILN_ M| | M exp{— (1/kgT) updateg microsteps with measured autocorrelation times of
' ' (5x10°)— (5% 10%) updates.
X[AHg+HgyctHikl} (68) Finally, we examined the validity of the assumption con-

stantu; (u;=u). We performed the check withl fixed (at
We then varied not only the particle positions, but in thisM =20,40 and withM self-adjusting, although was fixed
case also the disk radiusand the particle numbev. Note  in both cases. We also allowed a range of coupling constants
that we cannot specify the coupling constant, which dependg?/kgT from 10 2 to 4x10 . At every Monte Carlo mi-
on [M]. Since the LK concentration is self-adjusting, the crostep we solved the set bf linear equation$Eq. (10)] for
system “chooses” its own coupling constant. the {u;}. Analyzing the distribution of fluctuations, we
The results of our simulation are shown in Fig. 5, wherefound that the standard deviation was substantial, about 25%
we plot the equilibrium disk radiug* (in micrometersas a  of the average value, for the weak-coupling regime. The im-
function of the tensiony (in units of kg T/um?) for fixed  portant thermodynamic quantifv ], however, showed only
vesicle radiufR=10 um. The lower of the two curves is the small deviations from the mean-fieldixed ) prediction.
u* prediction of Young’s lawu* =R(2G/y)Y2with G=G,5  These results indicate that the fixactheory could be ques-
[see Eqgs(8) and(24)], that is, neglecting the indirect inter- tioned on this basis, in particular near the collapse transition
actions. The data marked by pluses are the result of the simwvhere substantial concentration fluctuations are observed
lation, also neglecting interaction. For smallgrthe agree- [see Fig. 4b)], and more numerical work is necessary.
ment between theory and simulation is good, while for large
v theory underestimatas® systematically. This is due to the
fact that for largey both the disk radius and the number of VIl. PHASE DIAGRAM AND CONCLUSION
LK molecules become small, so finite-size corrections be-
come important. The average number of LK molecules fo
our largesty (1.8X 10°kg T/ um?) was approximately 12.36,
while for our smallesty (3.5 10°kgT/um?) it was 81.8.
Next we turned to the LK coupling. The upper dashed
curve is the prediction of DH theory by using E§6). The
coupling leads to a modest increase in contact area. T
increase agrees with our datanarked by diamonds
but only for the smaller tensions. At higher tensions,
finite-size corrections exceed the DH correctiovhich de- Th
creases with increasing tensjoliVe chose a fixed value @f AF(u)==Gmu?+2mru+ay R?’ (69
(6X10%kgT/um®) such that the coupling constant was al-
ways small. The largest coupling constant, corresponding to
the smallesty data point, was onlyg?/kgT=1.46x10 2.  where

We will now use the results of the preceding section to
'construct a phase diagram for adhesion that includes the ef-
fects of correlations. This phase diagram will have the ten-
sion y of the vesicles as the horizontal axis and the disjoining
pressurep as the vertical axis.

The procedure we will follow is similar to the one de-
hgcribed in Sec. Il. The free energy is
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F. a/Z 2
G=Gis~ 7, (70 p<7)~[N](;) e"e kT8 ykgT, (79)

with F,, the LK correlation free energy an@s the ideal-  in which casep(y)ey"2

solution adhesion energy. We must minimiaé (u) with Although the DH adhesion energy is not to be trusted for
respect tau. A finite u minimum is associated with collec- finite values of g?/kgT, it is interesting to note that
tive adhesion and a=0 minimum with separation or mi- #%/d[M]? acting on—G([M]) is positive forq*/ksT small,
croadhesion. while aroundqzlkBT of order one,—(&zla[M]Z)G([M])
becomes negative. This indicates that the collapse transition
may be signaled by spinodal decomposition.

o ) ) In the collapsed state, the LK molecules are collected in a
We will first establish the phase diagram for the case thasjngle small patch. The collapse will suppress any billowing

the number of LK molecule$! is small compared to the | . ptveen LK molecules, $t(r)=h,y in the patch, while

"?‘Va”ab'e num_be_N. The_unboun_d__ gnd K _molecules act  the vesicles are spherical. The adhesion energy can then be
like a reservoir in chemical equilibrium with the LK mol- only weakly dependent o, so the fracture pressups(7)
ecules(see Sec;. I quer these conditions, we can use Eq'of the collapsed state is exbected toidependenof y. The
(24) for Gys, with M given by Eq.(22). fracture pressure of the collapsed state shouldcbedely

_ We yvill start in th_e regime of _high tensiom Where_the given by Eq.(73) with v replaced throughy, defined by
dimensionless coupling constant is small. In that regime, w (0 ~[M],c\B7ygksT. The resulting phase diagram was
use the DH correlation free ener¢§6) in Eq. (70): PT ISVOTY0lB 1 - 9P 9

shown already in Fig. 1. The saturation tensigyis of order

A. Weak-binding regime

a kgT/AN?.
—G([M])=kBT[M]In<[M] g)
B. Strong-binding regime
1
+[kBT |n(w> _EB][M] As we increase the LK binding energy, we absorb more
[N]"a and more of the adhesion molecules into the adhesion disks.

p2 ykgT Eventually, we exhaust the supply wh&h grows to be of
e M n(r 252 [M]|+pAh, orderN. The condition for this to happen is tha¥l ],5 given
i P30 by Eq.(22) exceedN/wu2, which is the case if
(72) Eg 4aR?
whereAh=hgy.—hy . First minimizingAF with respect to kgT [N]a"“u
[M] gives a LK concentration . o , ,
The adhesion disk is then in a canonical ensemble With
p2 [Ms]yksT ~N. The discussion of the phase diagram proceeds along the

, (72 same lines and the results are qualitatively similar. There are,
however, a number of quantitative differences: The layge
threshold pressure ip{®”’~Eg/Aha3, the enhancement of
the threshold pressure in the collapsed regifiksT=1 is

of orderEg/yAh?, and the bounding line between weak and
strong coupling igp(y)~ y(N/2R?)*2 for small y is pro-
portional toy (rather than toy'/?).

IMIEIMs)™ T TiMel | e p?a2
with [M ] the LK concentration in the absence of correla-
tions ([M,s]=[N]%(a’?/a)%efe’*eT). Inserting Eq. (72)
back into Eq.(71) gives a thresholg(y) for separation
whereG=0 (see Sec. )t

KT [M ] ykeT In summary, our results demonstrate that the ideal-

(9)=p®| 1+ — 2 In| =25 (73)  solution assumption for the LK molecules, as well as the
pPr(y)=p7 167 vAh2 Toh2a2 ||’ | : ; e

Y (pP7)7ag assumption of homogeneity for the adhesion disk, is funda-

mentally incorrect. No matter how small the coupling con-

with p(TO) the separation threshold in the absence of correlastantq?/kgT, i.e., no matter how large the membrane ten-
tions given by Eq(24). Correlations thuincreasethe adhe-  sjon, the adhesion disk is necessarily inhomogeneous with
sive strength since the argument of the logarithm is of ordemost adhesion molecules clustered around the rim. We be-
1[M],sa3, which is large compared to one. The enhancedieve that this organization of the adhesion disk is a generic
ment factor of the threshold pressure is of orkgf/yAh?, phenomenon for the competitive adhesion description em-
which grows with decreasing as 1k. bodied in the Bell model. For lower tensions, the deviations

As we reducey, the coupling constang?/kgT starts to  from the noninteracting model are severe. If the tensjon
increase. The adhesion disk should collapse wiféksT=2  <kgT/Ah?, then loss of adhesion proceeds via a collapsed
according to Eq(42), or even earlier according to the nu- state. The collapsed state has an adhesive strength that is
merical simulations of Sec. VI. Using?/kgT=2, the transi- enhanced by a factor dézT/yAh? for weak binding and

tion should occur whep=p(y), with Eg/yAh? for strong binding. The collapsed state can be
viewed as an extreme example of stress focusing.
p(y)=[M]y8mykgT. (74 To apply our results to actual bioadhesion, we need to

assign values toy, Eg, p, R, and[N]. Starting with the
To estimatep(y), we usegfM]=[M]g distinction between weak and strong binding, measured val-
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ues of Eg/kgT for adhesion molecules range from 5 ferences in cellular adhesion energies are attributed to varia-
(selectin-carbohydrate bindihtp 35 (biotin-streptavidinas  tions in the concentration of the adhesion molecules on the
discussed in Sec. |. Typical area densities of adhesion mokell surface or in the type of adhesion molecUl2g]. In the
ecules are about 1/200%%0 on a spherical vesicle of radius present study we have found that the adhesion energy of a
R=10 um, there would be of ordeX=10* adhesion mol- cell also may be modulated by varying the glycocalix repul-
ecules. The length of an adhesion molecule is in the ranggion or externally applied stresses. Tissue organization in
100—200 A, so the effective reactive asd/a should be of  stressed tissue thus could be different from that of unstressed

order 100 &. For an adhesion disk of radius-1 um, the  tissue.

weak-binding range is theBg/ksT<10 according to Eq. A second area of possible biological relevance concerns
(76). Both weak and strong binding are thus realistic possithe early stages of formation of clusters of adhesion mol-
bilities for vesicle unbinding. ecules(such as cadherinsn epithelial cells. Under ordinary

The next question is whether the predicted stress-focusingStatic” conditions these adhesion molecules are usually
transition is in a realistic range of parameters. From thefonnected to the cytoskeleton. However, during the early
phase diagram Fig. 1, one sees that for tensions stages of the formation of the adhesive link between two
<kgT/Ah?, the collapsed state is a necessary intermediate igells, the adhesion molecules may cluster in groups by the
the unbinding scenario of vesicles. White blood cell tensiongnembrane-mediated attraction mechanism discussed in this
have been measured and were found to be in the range BfPEr: This clustering could then be followed by the connec-
10"2 erg/cnt. Red blood cell tensions are so low that theytion to the cytoskeleton. It should be noted that in general
could not be measured. If the glycocalix compression is les1€re are several junctions along the adhesion area between
than 100 A, which seems very reasonable since that is th/0 epithelial cells. This could be a natural consequence of
size of the adhesion molecules, therckgT/Ah? and the the decompositional kinetics of the collapse transition, with

collapsed state should indeed be encountered in Fig. 1 giisconnected clusters forming in separate area’s. The authors
increasing the disjoining pressure. however, are not aware of studies of early stages of adhesive

One particularly interesting experiment on vesicle adhelinks in epithelial cells. o -
sion was performed by Chiruvolat al. [27] using biotin- A general problem for the verification of the predictions

streptavidin bonding on 500-A vesicles with about 80 linksOf this paper for living cells is presented by the dynamical
between the vesicles. Using=a’=20 A? and Eg/ksT nature of adhesive links. After molecular recognition be-
=30, we should be deep in the strong-binding regime. Thdween an adhesion molecule and its ligand, formation of cy-

vesicles in the experiment were nominally tensionless so thg)skeletal links can, as mentionedl, alter the su.rface energies.
adhesion disk should be collapsed into a small patch. Opticﬁ"so’ at the molecular level, studies of adhesion molecules

studies of biotin-streptavidin vesicle aggregation are in good/Nder stress d_emonstrate that they respond in a time-
agreement with this prediction. The disjoining presspris dependent fashion: The fracture of the link between an ad-

not due to a glycocalix. However, thermal fluctuations pro-Nesion molecule and its ligand also is known to depend on

duce a Helfrich entropic repulsion with a similar effect. It the observation periofB0].

would be interesting to add PEG lipids to these vesicles,

which could act as an artificial glycocalix. ACKNOWLEDGMENTS
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lished, the adhesion molecules trigger the release of Iy5|§ X ) : .
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agents that destroy the target cell membrane. In the collaps o;m (Technische Univgrs'itaM[jnFi)ch) for discussing the

state, the release of lysis agents on a focused section of t%eerivation of Eq(32)
target membrane would be considerably more effective. In 9454
addition, the stress-enhancement fadEgr yAh? for strong

coupling is order 1®for y~102 erg/cnf, Ah~10 A, and APPENDIX: MEAN POTENTIAL

Eg/kgT~20. The stress-focused state is thus expected to be 14 find the potential energgU of a charge brought in
far stronger than the homogeneous adhesion disk envisag

by Bell and co-worker$10]. ?rdom infinity to R, with a fixeq charge at the o[igirj, we fix
Adhesion in biological tissue in general does not involvetWo charges in placé=1 atr=0 andi=2 atr=R) and
just two cells but rather the coordinated organization of largé/low the remaining charges to reach thermal equilibrium. In
numbers of cells and the use of a study of adhesion betweghe limit R—0, the two charges interact via their “bare”
pairs of cells appears to be limiteditovitro studies. Knowl-  logarithmic attractive potentidsee Eq.(35)] so
edge concerning adhesion energies between pairs of cells .
can, however, give important insights into the organization R
of cells. In the “thermodynamic” model of cell sorting dur- ?
ing embryogenesis of Steinbefd8] for instance, tissue or- _
ganization of neural retina cells was found to be based on th8ince the averaged height profidé(r)), around a single
hierarchy of cell adhesion energies of the various cells. Difcharge obeys, for smalll,

u?

—_— + S .
2777'” const for|R|—0. (A1)

AU(R)~
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<h(r*)>l~2i:—7 In(r/£)+ const, (A2) (N =R))VEN(T))a}+ const,

with u, the energy cost of a single charge.

we can combine Eq$Al) and(A2) as We now note thatv2(h(r)), is strongly peaked at the

S R R position of the charge:
AU(R)~ u(h(R)),+const for|R|—0. (A3)

- Mo
It should be noted though that our mean-field assumption V#h(r));== &(r)+(regular terms. (A6)
M= is questionable when two charges approach closely. Y

To find the largeR| limit of SU(R), let (h(])), be the  Using Eq.(A6) in Eq. (A5) gives, forR— o,
spacing profile around the two charges. In the liRit> oo,

h(r)),~(h(r));+(h(r—R));—(h A4 . : iy
(h(r))2=(h(M)1+<h(r =R = (W) A% Ihe constant is determined by the condition tha(c)
since the “charge clouds” surrounding the two fixed charges=2U;. Hence we conclude that
do not mutually deform each other. Inserting E44) into

Eq. (32) gives the internal energy ,(R):

Ua(R)~2u+ ul(h(R))1—(h)]. (A7)

AU(R)=~u[(h(R))1—(h)] for R—,  (AB)

y which is consistent with EqA3). In the body of the paper,
Uy(R)=— > f d?r[V(h(r)),]?+ const (A5)  we therefore use the identification

) AU(R)~ u[(h(R))—(h)] (A9)
~2u,+ 2 [ @rhOnTERG-R) e
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