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Vesicle-vesicle adhesion by mobile lock-and-key molecules: Debye-Hu¨ckel theory
and Monte Carlo simulation

Daniel M. Zuckerman
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

Robijn F. Bruinsma
Department of Physics, University of California at Los Angeles, Los Angeles, California 90095

~Received 11 December 1996!

Adhesion between cells is due to formation of weak, reversible chemical bonds between ‘‘lock’’ and ‘‘key’’
molecules imbedded in the cell surfaces. In this paper we present a theory for cell adhesion that extends the
well-known Bell model of noninteracting adhesion molecules to include the cell-surface mediated elastic
coupling between the molecules. We show that the statistical mechanics of this many-body problem can be
mapped onto that of the two-dimensional Coulomb plasma with attractive forces. Using this mapping we find
the following results:~i! the ideal-mixing state assumed by Bell and co-workers@Science200, 618 ~1978!;
Biophys. J.45, 1051 ~1984!# is unstable against migration of adhesion molecules to the rim of the adhesion
disk in agreement with experimental observations and~ii ! loss of adhesion is generally preceded by the
collapse of the adhesion disk into a ‘‘stress-focused’’ state with enhanced adhesive strength.
@S1063-651X~98!08901-6#

PACS number~s!: 87.22.Nf, 87.15.Kg
he
tr
u

tru
in
h
o

th

-

i-
-

in
le
th
l-
ta
ad
f

su
ro

t
h

ra

ar

ar

r
o-

gy

two
ibed
ar

ll
co-
he
ere
otic

nge
en
be-
ers
ch-
at-

ads

the
l-

ss.
-

te
is
well
stic

e

I. INTRODUCTION

Cell-cell recognition and adhesion through cellular ad
sion molecules is a fundamental process in biology, cen
to embryological development, tissue stability, and imm
nology. Great progress has been made in the isolation, s
ture determination, and biochemistry of adhesive prote
and of molecular recognition by proteins in general. In t
immune system, for example, the molecular basis
antibody-antigen recognition is the interaction between
membrane-bound immunoglobin~Ig! molecules of leuko-
cytes~and lymphocytes! with foreign molecules, such as li
popolysaccharides attached to bacterial membranes@1#. The
molecular basis for cell-cell recognition during embryolog
cal development@2# is the homophilic binding of membrane
bound cellular adhesion molecules~CAMs! such as
N-CAMs, P-CAMs, and cadherins.

The physical characterization of bioadhesion is attract
increasing interest, but there remain significant obstac
The difficulties stem from the fact that, on the one hand,
interaction between a particular pair of ‘‘lock-and-key’’ mo
ecules is far from simple, depending as it does on the de
of the molecular architecture, while, on the other hand,
hesion molecules are embedded in a cell membrane and
quently attached to the cytoskeleton~which can transmit sig-
nals from the adhesion molecules@3#!. Certain important
features are nonetheless becoming clear. Force mea
ments between adhesion molecules by atomic force mic
copy @4#, the force box@5#, and other experiments@6# indi-
cate that forces of order 50–200 pN are required to break
chemical bonds between typical adhesion molecules. T
fracture force, however, is sensitively dependent on the
at which the force is applied@7#. Equilibrium binding ener-
gies (EB) measured from chemical equilibrium constants
of order 5kBT for selectins and their sugar ligands@8#, but
considerably higher for integrins. For Ig molecules, they
571063-651X/98/57~1!/964~14!/$15.00
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in the range 10kBT– 20kBT @1#. This is a sensible range fo
‘‘signaling’’ molecules, from a design perspective, since m
lecular bonds of strength less thankBT would not withstand
thermal fluctuations, while chemical bonds with an ener
much greater thankBT would be too ‘‘costly’’ to remove@9#.
Typical cell-cell adhesion involves of order 103– 104 adhe-
sion molecules, so the total adhesion energy between
cells is substantial. Cell adhesion thus should be descr
statistically: The cooperative effect of many weak molecul
bonds collectively creates a strong adhesion.

A major part of our physical understanding of cell-ce
adhesion comes from a model developed by Bell and
workers@10#. The Bell model describes cell adhesion as t
competition between two opposing mechanisms. First, th
is a generic repulsion between the cells due to the osm
pressure of the membrane lipo-polysachharides~the glyco-
calix! that are squeezed between the cell surfaces. The ra
of this repulsion is about 500–1000 Å. This repulsion th
competes with the above-mentioned specific bonding
tween lock-and-key molecules. Pure phospholipid bilay
containing neither lock-and-key molecules nor lipopolysa
harides interact through a combination of van der Waals
traction and double-layer electrostatic repulsion. This le
to an adhesion energy of orderkBT/(50 Å2) @11#. This non-
specific adhesion, which is undesirable, is prevented by
glycocalix repulsion, while the lock-and-key molecules a
lows for a more refined regulation of the adhesion proce

Bell and co-workers@10# treated the lock-and-key mol
ecules as an ideal~i.e., noninteracting! two-dimensional re-
active solution where reactantsL ~for lock! andK ~for key!
are in chemical equilibrium with the reaction producedLK
so L1K
LK. This assumption allowed them to compu
an adhesion free energyG. Once the adhesion free energy
known one can determine whether or not cells adhere as
as the shape of adhering cells using the continuum ela
theory of cell membranes@12#. Continuum theory relates th
964 © 1998 The American Physical Society
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57 965VESICLE-VESICLE ADHESION BY MOBILE LOCK- . . .
contact angle of a cell adhering to a substrate to the adhe
free energy and the tension of the cell wall through Youn
law, borrowed from the theory of wetting@13#. The results
appear to be confirmed by micropipette studies of cell ad
sion @14#. In addition, continuum theory also predicts th
suppression of thermal shape fluctuations@15# in strongly
adhering cells, which has been confirmed experiment
@16#. From the viewpoint of a physical description, the B
model is quite attractive. As discussed in more detail in S
III, it allows us to include the biochemical complexity o
protein-protein recognition through a small number of m
surable quantities from which we can deduce the effec
adhesion strength. It also can be extended to include
namic processes@17#.

There are nevertheless experimental observations tha
pear to be in disagreement with the model. Studies of
adhesion ofT cells to target cells by Tozeren, Sung, a
Chien @18# revealed that the adhesion disk connecting
cells isinhomogeneouswith adhesion molecules migrating t
the rim of the disk. Similar phenomena were also reported
Chen, Helm, and Israelachevilli@19#. Numerical simulations
of plate adhesion by polymers@20# show, in detail, that when
the plates are pulled apart, the adhesive layer decomp
into stress-focused regions with higher concentration of
hesion molecules and cavities with low concentratio
Eventually, only a few bridges are left and cavities for
everywhere.

It is the basic premise of this paper that the Bell mode
sound but that the ideal-solution approximation is inval
The assumption of weak interaction between adhesion m
ecules seems to be quite reasonable at first sight. The m
spacing between the 103– 104 adhesion molecules in a 1-mm
adhesion disk is about 100 Å, long enough to exclude dir
interactions as a significant effect. Braun and co-work
@21# nevertheless suggested that adhesion molecules d
teract, butindirectly. They proposed that cell-cell repulsio
by the glycocalix generates a long-range attraction betw
adhesion molecules,mediated by the cell membranes. Theo-
retical analysis of the stresses in adhering membranes@22#
confirmed this concept and predicted an attractive poten
between adhesion molecules that increases with spacingr as
ln r. In this paper we generalize the Bell model to include
indirect interaction between adhesion molecules. The sta
tical properties of this many-body system are studied b
combination of statistical-mechanics methods and Mo
Carlo simulation. Some of the mathematical features of
model were presented earlier in a brief report@23#.

We define our model in Sec. II, where we also review
continuum theory of adhesion. In Sec. III we restrict ou
selves to noninteracting adhesion molecules. In that limit
reproduce the ideal-solution theory of Bell and co-work
@10#. In Sec. IV we include the correlations between the
hesion molecules and show that this leads to a many-b
problem equivalent to a two-dimensional~2D! plasma of
‘‘charges’’ interacting with an attractive logarithmic pote
tial in a neutralizing background. We discuss the gene
structure of the free energy and demonstrate that it ha
singularity as we increase the coupling constant. We t
borrow a method from plasma physics, specifically Deb
Hückel theory, to show that the state of uniform mixing
adhesion molecules implicit in the Bell model isunstable for
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arbitrarily small values of the coupling constant. This is only
true in the thermodynamic limit of many adhesion mo
ecules. For a finite number of adhesion molecules, there
small range where the uniform state is stable. In Sec. V
show the result of a Monte Carlo simulation. We find that t
distribution of adhesion molecules is indeed inhomogene
with the adhesion molecules collecting at the rim of the a
hesion disk. As we increase the coupling constant, we
that the adhesion molecules collapse into a single patch w
the dimensionless coupling constant exceeds a value of o
one, which may be the singularity in the free energy found
Sec. IV. Finally, in Sec. VI we construct the adhesion pha
diagram shown in Fig. 1, our main result. The horizontal a
g in Fig. 1 is the tension of the cell surface and the verti
axis is the glycocalix disjoined pressurep. The horizontal
dotted line is the critical pressurepT

(0) for cell separation
found from the Bell model with no interaction.

The part of the phase diagram labeled ‘‘weak couplin
corresponds to an inhomogeneous adhesion disk with a
sion molecules mostly distributed around the rim. Increas
p leads to fracture of adhesion at the double line labe
pT(g). For largeg, pT(g) approaches the fracture pressu
pT

(0) of the noninteracting Bell model. As we reduceg, we
reach the boundary markedp(g), where the adhesion mol
ecules collapse into a single cluster. The adhesive streng
the single cluster,pT(coll), exceeds the ideal solution valu
pT

(0) by a considerable amount provided the lock-and-k
binding energyEB exceedskBT significantly. We conclude
with a discussion of the relevance of our results.

II. ADHESION HAMILTONIAN

We construct in this section an effective Hamiltonian
describe the adhesion between two cells with mobile ‘‘loc
(L) molecules embedded in one cell and mobile ‘‘key’’ (K)
molecules in the other cell@24#. The cells are treated in a
simplified way: as two vesicles~i.e., closed surfactant bilay
ers! with embedded adhesion molecules. Our model is p
tured in Fig. 2. In Fig. 2~a! we show two simplified cells
adhering by lock-and-key~LK ! molecules at a small circula
contact patch, which is shown in enlarged cross section
Fig. 2~b!. In the enlargement, we see bound lock-and-k
pairs separated by areas where the membranes ‘‘billow’’

FIG. 1. Phase diagram withp the glycocalix pressure andg the
tension. The heavy line indicates the collapse of the disk. T
double line is the threshold for loss of adhesionpT(g). The hori-
zontal dashed line is the threshold pressure of the Bell model.
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966 57DANIEL M. ZUCKERMAN AND ROBIJN F. BRUINSMA
due to repulsive pressure from the glycocalyx. We assu
that lock-and-key pairs force only a modest local compr
sion of the glycocalyx.

We now write the adhesion Hamiltonian as a sum of th
parts

FIG. 2. ~a! Two model cells adhering by lock-and-key adhesio
The upper vesicle only carries locks (L), the lower only keys (K).
The adhesion complexes are denotedLK. The radius of the adhe
sion disk isu, the vesicle radius isR8, and the contact angle be
tween the two vesicles isu. The hatched coat on each cell is th
glycocalix ~lipo-polysachharides embedded in the membranes!. ~b!
The repulsive pressure of the glycocalyx produces billowing ou
the membrane in between LK sites. This in turn leads to attrac
and stress focusing. The contact angleu is determined by Young’s
law as shown.
e
-

e

H5Hel1Hglyc1HLK . ~1!

The first termHel is the continuum elastic energy of th
vesicle,Hglyc is the glycocalyx contribution, andHLK is the
Hamiltonian of the lock-and-key adhesion molecules. W
will discuss the three terms separately in the following su
sections.

A. Elastic energy: Continuum theory

The elastic energy of a~symmetric! bilayer vesicle is, in
the simplest continuum theory@25#, given by

Hel5
1

2
kE E

surface
S 1

R1
1

1

R2
D 2

1gA2PV. ~2!

In the first term,k is the Helfrich bending energy~typically
of order 10kBT– 100kBT! and R1 ,R2 are the principal radii
of curvature. In the second term,g is the tension of the
vesicle andA its surface area. For the third term,P is the
osmotic pressure difference between the vesicle’s inte
and exterior andV denotes the volume. For a nonadheri
vesicle,Hel is minimized byR15R25R, i.e., a sphere, with
P52g/R ~Laplace’s law!.

Upon adhering together, the vesicles may deform,
which case they take the~approximate! shape oftruncated
spheresas shown in Fig. 2~a!. The new vesicle radius will be
calledR8 and the area of contactpu2, with u the radius of
the contact disk. Cells maintain their volume, so we w
assume that the volumeV is fixed during the process o
adhesion. However, because of the possibility of the smo
ing of the ruffles in the cell surface, generated by the tens
of the cytoskeleton, the effective surface area of a cell is
fixed. We can quantify this by noting that it follows from
geometrical considerations that

R82R'
u4

16R3 . ~3!

for u/R!1, while the areaA increases by an amount

DA'
pu4

4R2 . ~4!

Using Eqs.~3! and ~4!, one finds that the elastic energ
increases by an amount

DHel'
p

2
g

u4

R22pk
u2

R2 12put, ~5!

assumingu/R!1. The first term represents the work done
the tensiong as the vesicle surface area increases byDA.
The second term is the reduction in bending energy due
flattening the contact disk. The final term gives the ene
cost of the high degree of bending that occurs at the rim
the adhesion disk. It has the form of a line energy with li
tensiont. A functional minimization of Eq.~2! shows@12#
that, within continuum theory,

t.
3

4
Ak

g
G, ~6!

.

f
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57 967VESICLE-VESICLE ADHESION BY MOBILE LOCK- . . .
with G the adhesive energy per unit area of the contact d
As a simple illustration of Eq.~5!, we add an adhesive

energy2Gpu2 to DHel and obtain the following mean-field
continuum expression for the free energy:

DFcont~u!52Gpu21
p

2
g

u4

R2 12put, ~7!

where we assumek/R2!G, which is the case under all prac
tical conditions. We plotDFcont(u) for typical parameters in
Fig. 3. There are, in general, two local minima ofDF(u):
one atu50 and one at finiteu. A first-order phase transition
occurs nearG50 when the global minimum shifts fromu
50 to finiteu. We will refer to theu50 minimum as ‘‘mi-
croadhesion,’’ which itself describes two possible scenar
either ~i! only a small number of adhesion molecules a
involved in the binding with the two adhering vesicles th
are essentially spherical or~ii ! there is no adhesion at all. A
minimum of DFcont(u) at finite u represents ‘‘collective ad
hesion’’ involving many adhesion molecules. The collecti
adhesion minimum ofDF(u) obeys, for smallG/g,

u* .RS G

g D 1/2

. ~8!

An alternative way to arrive at Eq.~8! is shown in Fig. 2. In
equilibrium, the force per unit length on the rim of the a
hesion disk must vanish. This is the case
G12g cosu52g, with u the contact anglebetween the
cells, measured from the contact plane. This is just Youn
law for three-phase contact lines@13#. Figure 2~a! shows that
u.(G/g)1/2 for smallu, together withu>u/R leading to Eq.
~8!. The collective adhesion minimum of the free energy th
corresponds to Young’s law.

The point where the two minima are degenerate can
expressed in terms of the vesicle sizeR. Collective adhesion
should occur when the vesicle radius exceeds a critical v
given approximately by

Rc.S k

GD 1/2

. ~9!

Vesicles with radiiR,Rc will be spherical~and at best mi-
croadherent!, while those withR.Rc will have a finite ad-
hesion disk that obeys Eq.~8!. One of the aims of this pape
is to find out whether this simple ‘‘mean-field’’ picture re
mains valid if we allow for the internal degrees of freedo
of adhesion.

B. Lock-and-key adhesion

Our next step is to construct the Hamiltonian for the lo
and key molecules@HLK of Eq. ~1!#. Following Bell and
co-workers@10#, we assume that the molecular bonds a
fully reversible and that the bound adhesion complexes,
the unbound adhesion molecules, are mobile within the t
dimensional contact area. We assume that each adhe
vesicle possessesN adhesion molecules in total, with on
vesicle containing onlyL molecules and one onlyK mol-
ecules. TheL andK molecules can bond, forming LK com
plexes, of quantityM and chemical binding energyEB .
Hence we haveM freely mobile LK molecules in the contac
k.

s:

t

f

’s

s

e

ue

e
e
-

ing

region, whileN2M unbound adhesion molecules roam ea
vesicle. We further assume the LK molecules to have
infinitely repulsive hard core of radiusa0 . The lock-and-key
Hamiltonian will contain three parts:~i! the binding energy
(2MEB) for the LK complexes,~ii ! the hard-core repul-
sions, and~iii ! the energy cost of deforming the membran
while maintaining the proper LK ‘‘pinning’’ separations
This last term is due to the fact that the lock-and-key co

FIG. 3. Continuum theory of adhesion energyDFcont(u) as a
function of the radiusu of the adhesion disk.~a! shows a finiteu
global minimum. ~b! As G, the adhesion energy, decreases
global minimum shifts tou50 at a critical point. The paramete
values are as follows. The dimensionless adhesion energy 2G/g
equals~a! 231023, ~b! 6.731024, and ~c! 531024. The dimen-
sionless line tension 2t/RG50.01 for all three cases.
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968 57DANIEL M. ZUCKERMAN AND ROBIJN F. BRUINSMA
plexes pin the two membranes together@see Fig. 2~b!#, caus-
ing compression dimples in the glycocalyx at these pinn
sites. Given the tension in the membranes, then, one
visualize the contact region as a dimpled seat cushion, w
mobile dimples.

We let h(rW) represent the spacing between the two me
branes in the contact disk and let the set$RW i%, with i
51,. . . ,M denote the locations of the LK complexes with
the adhesion disk. The pinning constraints are thus

h~RW i !5hLK , i 51, . . . ,M , ~10!

with hLK the fixed spacing at the LK sites. We account f
the elastic energy cost of the dimples by adding to
Hamiltonian

1
2 gE d2r ~¹W h!2, ~11!

where the integral multiplying the tensiong is the excess
area of the dimples.

We must also include a term that prevents the comple
of finite molecular diametera0 , from overlapping. This will
consist of standard hard-core potentials

V~ uRW i2RW j u!5H ` for uRW i2RW j u,a0

0 for uRW i2RW j u>a0.
~12!

Putting all the terms together, we can explicitly write the L
Hamiltonian as

HLK@h#52MEB1(
i , j

V~ uRW i2RW j u!1 1
2 gE d2r ~¹W h!2,

~13!

where the integral is to be performed over the contact d
only.

C. Glycocalyx

The final contribution to the lock-and-key Hamiltonian
the compression energy of the glycocalyx. The glycocalyx
essentially a ‘‘brush’’ of charged macromolecules~oligosa-
chharides! extending out of the membranes. The portions
the membranes in the contact disk are repelled from
another due to osmotic pressure produced by confineme
the charged macromolecules and their counterions inside
adhesion disk. The thicknesshglyc is typically of order 100–
300 Å.

The osmotic pressure of a compressed polyelectro
brush is primarily due to the counterions and obe
’t Hooft’s law P5nkBT, wheren is the concentration o
counterions. For the glycocalyx,

P5
zw

h
kBT, ~14!

with w the area density of charged macromolecules,z the
number of charges per macromolecule, andh the intermem-
brane spacing, assumed here to be only slightly less than
glycocalyx thicknesshglyc . For a modestly compressed gly
cocalyx, it is then easy to show that
g
an
th

-

r
e
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k

s

f
e
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he
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s

he

Hglyc.pglycE d2r @hglyc2h~rW !#, ~15!

with pglyc.zkBTw/hglyc . This would seem to be a naive ap
proximation:hglyc really is only themeanheight of the oli-
gosachharides, whereas the concentration profile of a p
electrolyte brush is a smoothly varying function of th
distance from the anchored ends. To see why the approx
tion is valid, first note that we shall be concerned with t
biologically relevant casehLK.hglyc , i.e., theL andK mol-
ecules are comparable in size to the oligosachharides. N
let V(h) be the full intermembrane repulsive energy per u
area generated by the glycocalyx, withh the membrane-
membrane spacing. The functionV(h) surely is monotoni-
cally decreasing withh, so V8(h),0. If we are only inter-
ested in the rangeh.hglyc.hLK , we can always expand

V~h!'V~hglyc!1~h2hglyc!V8~hglyc!1••• , ~16!

with V8(hglyc),0. Integrating over the adhesion disk aga
gives Eq.~15! if we identify pglyc52V8(hglyc). Note that
pglyc has the dimensions of pressure. It is the repulsive fo
per unit area exerted on the cell surface and we will refe
it as the disjoining pressure. Equation~15! is thus generally
applicable when the LK link produces only a mild local d
formation of the glycocalyx. If the LK links are significantl
shorter thanhglyc , then nonlinear terms would have to b
included in Eq.~16!.

We finally are in a position to write down the full Hamil
tonian

H5
1

2
gE d2r ~¹W h!21

1

2 (
iÞ j

V~RW i2RW j !2MEB

1pglycE d2r @hglyc2h~rW !#1
p

2
g

u4

R2 12put.

~17!

The integrals here are constrained by the pinning condi
~10!.

III. IDEAL SOLUTION THEORY

We can view the lock-and-key description of adhesio
under conditions of thermal equilibrium, as one ofchemical
equilibrium @10#. A reservoir of reagentsL ~the first vesicle!
is in contact with another reservoir of reagentsK ~the second
vesicle!. In the region of contact, theL ’s andK ’s can react
reversibly,

L1K
LK, ~18!

forming a productLK and releasing a binding energyEB .
The area concentrations of reagents@L# and @K# and of re-
action products@LK# must then obey the equilibrium theor
of ideal chemical solutions

@LK#

@L#@K#
5Keq~T!, ~19!

where Keq(T)}exp(EB /kBT) is the temperature-depende
equilibrium constant~in chemical literature,EB is referred to
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57 969VESICLE-VESICLE ADHESION BY MOBILE LOCK- . . .
as the ‘‘standard free-energy change’’ of the reaction!. This
relation assumes that, apart from the chemical reaction@Eq.
~18!#, the reagents and products do not interact. In the n
tion of Sec. II, @LK#5@M #5M /pu2. If M!N, then @L#
.@K#.@N#5N/4pR2. In that case, Eq.~19! reduces to
@M #5@N#2Keq.

The free energyDF computed from the adhesion Hami
tonianH of Sec. II must reproduce the ideal solution resu
if we drop the LK-LK interactions. We do this by settin
h(rW)5hLK everywhere, i.e., by assuming a flat profile for t
membrane spacing, thus forbidding any dimples and
elastic coupling. The glycocalix is then compressed by
amounthglyc2hLK . This yields an ‘‘ideal-solution’’ Hamil-
tonian

H IS52MEB1p~hglyc2hLK !pu212put1
p

2
g

u4

R2 .

~20!

The ideal-solution free energy (DF IS), then, will include the
internal energyEIS.H IS along with the appropriate entropi
terms for the three ideal solutions~of L ’s, K ’s, andLK ’s!

DF IS~u,M !52MEB1p~hglyc2hLK !pu212put

1
p

2
g

u4

R2 1kBTH M lnS M

pu2 a2D2M

12~N2M !lnS N2M

4pR2 a82D22~N2M !J .

~21!

Herea2 anda82 are molecular size areas. When computi
the adhesion free energy per unit areaG, we must always
subtract fromDF the free energy 2NkBT ln(Na82/e24pR2) of
separated vesicles. Minimization ofDF IS(u,M ) with respect
to M indeed confirms the ideal-solution result. Explicitly, th
equilibrium valueM IS for the number of LK molecules is

M IS'pu2@N#2e~EB /kBT!S a82

a D 2

, ~22!

with a82/a representative of the molecular-size range of
LK interaction andEB assumed to be of orderkBT.

By replacingM by M IS in Eq. ~21!, we can now write the
free energyDF IS as a function of the single variableu,
which will enable a comparison with our results from t
simple continuum model of Sec. II:

DF IS~u,M5M IS!52GISpu21
p

2
g

u4

R2 12put, ~23!

where

GIS.kBT@N#2S a82

a D 2

e~EB /kBT!2p~hglyc2hLK !, ~24!

where we have dropped the subscript in the disjoining p
sure pglyc , a convention followed for the remainder of th
paper. We have writtenDF IS in the same form as theDFcont
a-

,

y
n

e

s-

deduced earlier from continuum theory@Eq. ~7!#, except that
here we have an explicit form for the adhesion free-ene
densityG.

The discussion of Sec. II remains valid and we exp
again a~weak! first-order separation transition nearGIS50 if
we decrease the binding energyEB or increase the disjoining
pressurep. Note that the adhesion free energyGIS is very
sensitive toEB because of the exponential factor. Changes
adhesion behavior thus can be regulated efficiently by al
ing EB ~for example, through changes in thepH level!. We
will later construct a phase diagram for adhesion in theg-p
plane. For the ideal-solution theory, this phase diagram
very simple: The boundary between adhesion and fractur
set byGIS50. In theg-p, this corresponds to a critical dis
joining pressure

pT
~0!5kBT@N#2S a8

a D 2 eEB /kBT

hglyc2hLK
, ~25!

which is independent of the vesicle tensiong. Correcting for
the fact that this is really a weak first-order transition at fin
GIS does not materially alter this result. Ideal-solution theo
thus agrees with the earlier continuum arguments, but g
more precise information regarding the adhesion internal
grees of freedom.

From the physical viewpoint, Eq.~24! is very attractive.
The complexity of thousands of mobile adhesion molecu
each of which has a nontrivial architecture, is replaced b
single numberGIS , which depends on a limited number o
parameters:@N#, EB , a82/a, p, andDh5hglyc2hLK , which
at least in principle can be accessed experimentally. As
cussed in Sec. VII, if we put in reasonable values for th
parameters forT cell adhesion, one finds values forG in the
range 0.1–1 dyn/cm, which agrees well with micropipe
studies ofT cell adhesion@18#. Nevertheless, we have see
in the Introduction that adhesive bonds under stress dev
a heterogeneous structure, which requires a more deta
analysis including correlations between adhesion molecu
We will address this in the next section.

IV. CORRELATION ENERGY

In this section we will derive the indirect interactions o
curring among the bound LK complexes. The interactio
are due to the interplay between membrane tension and
cocalyx pressure, as first proposed by Braun and co-work
We will use the free energy computed in this section to c
struct a phase diagram in Sec. V.

A. Attractive Coulomb plasma

In our model the LK molecules couple to each other
two ways:directly, as described by the short-range pair p
tentialsV(uRW i2RW j u) in Eq. ~17!, andindirectly, mediated by
the membrane. Under typical conditions, the adhesion m
ecules have area concentrations that are low enough fo
rect interactions to be very weak. In the remainder of t
section, therefore, we focus on the long-range, indirect c
pling, although we will see later that the direct interacti
actually plays a key role.
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The indirect coupling is generated by the combined eff
of the first and fourth terms in Eq.~17! ~i.e., the elastic ten-
sion and the disjoined pressure!. We denote the sum of thes
two termsH int :

H int[
1
2 gE d2r ~¹W h!21pE d2r @hglyc2h~rW !#. ~26!

We can find the mechanical equilibrium spacing profi
h* (rW) by minimizingH int with respect toh(rW) while obeying
the M constraintsh(RW i)5hLK . This is done by the method
of Lagrange multipliers: We minimize

W[H int1(
i 51

M

m ih~RW i ! ~27!

and determine them i by imposing theM constraints. Setting
dW/dh50 gives

g¹2h* ~rW !52p1(
i 51

M

m id~rW2RW j !. ~28!

The positions$RW i% of the LK molecules vary with the con
figuration, which implies that them i andh* are also configu-
ration dependent.

We assume as a boundary condition on the solution of
differential equation thath(rW) is flat at the edge of the adhe
sion disk. Integrating Eq.~28! over the disk area and apply
ing Gauss’s theorem then gives

p

@M #
5

1

M (
i 51

M

m i[m. ~29!

That is, the mean of theM Lagrange multipliers is fixed by
the glycocalyx pressurep and the LK concentration@M #.

Note now the similarity between Eq.~28! and the Poisson
equation for a set of like charges in a neutralizing ba
ground. We can identifyh as the potential of a plasma ofM
positive charges~of magnitudem/g! in a uniform, neutraliz-
ing background of negative charge. Equation~29!, then, ef-
fectively imposes the overall charge neutrality. There
however, an important difference between the present m
and an ordinary one-component Coulomb plasma, whic
made clear after a sequence of steps. First, using partia
tegration and the boundary conditions, it follows that

gE d2r ~¹W h* !252gE d2r h* ¹2h* . ~30!

Now, inserting Eq.~28! into this result gives

gE d2r ~¹W h* !252pE d2r h* 2phLKpu2, ~31!

where we have also used the pinning constraints~10!. Fi-
nally, we insert Eq.~31! into Eq.~26! to obtain the energy o
the membrane shape in mechanical equilibrium:
t

is

-

,
el
is
in-

H int* 52 1
2 ~ h̄2hLK !pu21p~hglyc2hLK !pu2

52 1
2 gE d2r ~¹W h* !21p~hglyc2hLK !pu2, ~32!

where we denoted the mean spacing byh̄. Pursuing again the
electrostatic analogy~h↔f, wheref is the electrostatic po-
tential!, we see that the first term ofH int* indeed is like the

electrostatic field energy*d2r (¹W f)2, except for a crucial
difference in sign. The ‘‘Coulomb’’ interaction between two
like charges of our system~say,m1 /g andm2 /g! will thus
be attractive.

We now derive the explicit dependence ofH int on $RW i%.
The first step is to solve Eq.~28! for the equilibrium mem-
brane shape:

h* ~rW !52
p

4g
r 21(

i 51

M S m i

2pg D lnS urW2RW i u
a0

D 1h0 , ~33!

with a0 a molecular cutoff length andh0 a position-
independent~but $RW i% dependent! constant of integration.
The pinning constraints fix the set of$m i%:

hLK52
p

4g
RW i

21(
j Þ i

M S m j

2pg D lnS uRW i2RW j u
a0

D 1h0

~ i 51, . . . ,M !. ~34!

It is easy to show that for a homogeneous distribution o
large number charges, the Lagrange multipliers are all eq
m i5m. For a thermodynamic state with only weak conce
tration fluctuations, the$m i% are approximately equal as wel
We will assumem i5m for the remainder of the calculatio
and later test this assumption numerically. Note that un
this condition, the constraintsh(RW i)5hLK are obeyedonly
on average. We will discuss the validity of this approxima
tion in Sec. VI.

Inserting Eqs.~33! and ~28! into Eq. ~32! gives us the
final form for H int* ; we show only the explicit dependence o
the LK locations:

H int* ~RW 1 ,...,RW M !52
pm

4g (
i 51

M

~RW i !
2

1
m2

4pg (
iÞ j

lnS uRW i2RW j u
a0

D 1D, ~35!

where D accounts for theRW i-independent terms. The firs
term in this many-body Hamiltonian represents a parab
single-particle potential that tends to push LK molecules
the edge. The second term is a logarithmic,attractive pair
potential. Since the Coulomb interaction is indeed logari
mic in two dimensions, this confirms our earlier intuition. T
make the electrostatic analogy more concrete, the dimens
less coupling constant of this many-body Hamiltoni
m2/2pgkBT5p2/2pgkBT@M #2 can be denotedq2/kBT.

In terms ofq5m/A2pg, we can writeH* as
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H* 52
q2

2
M(

i 51

M S RW i

u
D 2

1q2(
i . j

lnS uRW i2RW j u
u

D 1
3

8
q2M2

2
q2

2
M lnS u

a0
D1p~hglyc2hLK !pu2, ~36!

where we include theM - andu-dependent parts ofD.
The number of adhesion molecules is not fixed. T

means that the contribution to the free energy generated
H int* (RW 1 ,...,RW M), which we will call the correlation free en
ergy, must be computed in thegrand canonical ensembl
with a chemical potential~controlled byEB!. In Secs. IV B
and IV C we will first discuss the simpler case of correlatio
between LK molecules for a givenM , i.e., for a fixed num-
ber of adhesion molecules.

B. Free energy

The M -particle free energy associated withH* is given
by

F52kBT lnH 1

a0
2MM ! )

i 51

M E
uRW i u,u,uRW i2RW j u.a0

d2RW ie
2bH* J

~37!

up to a trivial constant. From Eq.~36! we see that the vari
ablesRW i enter in the dimensionless combinationzW i5RW i /u. In
terms of thezW i variables, the partition function takes the for

Z5S u

a0
D 2MS u

a0
D ~bq2/2!M

e2~3/8!bq2M2 1

M !

3)
i 51

M E
uzW i u,1,uzW i2zW j u.a0 /u

d2zW i expS bq2

2 (
i

uzW i u2

2bq2(
i . j

ln~ uzW i2zW j u! D . ~38!

Now take the thermodynamic limitu→`, M→`, with q
finite. If the integral

E
uzWu,1

d2z e2bq2 lnuzWu ~39!

exists, then we are allowed to set the~small! ratio a0 /u to
zero in the second part of the partition function. The fr
energy in that case has the form

F

M
5kBT ln~@M #a0

2!1
q2

4
ln~@M #a0

2!1
q2

M
G~M ,bq2!,

~40!

with G(M ,bq2) a dimensionless function. If there exists
well-defined free energy per particle in the thermodynam
limit, then G must be proportional toM .

Suppose we keep the chargeq fixed. All the dependence
of F on the system sizeu then enters through the LK con
centration@M #. We can then determine a ‘‘fixed-q’’ equa-
tion of state from Eq.~40!. We define the 2D pressureP252
]F/](u2p)uq . From Eq.~40! we find
s
by

s

e

c

P25@M #S kBT1
q2

4 D . ~41!

This is the equation of state of anideal gaswith increased
effective temperaturekBT⇒kBT1q2/4. The free energy has
the general form of Eq.~40! only if the integral in Eq.~39!
exists. This is true providedbq2,2. For bq2>2, the inte-
gral diverges. We expect a phase transition at a tempera
Tc with

kBTc5
q2

2
. ~42!

For q2/kBT>2, the free energy becomes highly sensitive
the valuea0 of the microscopic cutoff because of Eqs.~38!
and~39!, whereas forq2/kBT,2 it depends only logarithmi-
cally on a0 . In terms of the original variables, we can wri
the equation of state forbq2,2 as

P2D5kBT@M #1
p2

8pg@M #
, ~43!

while the phase transition should occur at

kBTc5
p2

8pg@M #2 . ~44!

V. DEBYE-HÜCKEL THEORY

In the Bell model, it is assumed that the LK molecules a
uniformly distributed over the adhesion disk. In this sectio
we will borrow a classical method of plasma physics, Deb
Hückel ~DH! theory @26#, to compute the correlation fre
energy of the uniform state and simultaneously test the
bility of this state. We will assume that the dimensionle
coupling constantq2/kBT is small, so we are really doing
perturbation expansion around the ideal solution theory
Sec. III. Following DH theory@26#, we start by placing an
LK molecule ~say i 51! at the origin and keep it fixed. We
now want to calculate the thermally averaged height pro

^h(rW)&1 surrounding the fixed charge. The function^h(rW)&1
will be assumed to obey the condition

lim
urWu→a0

^h~rW !&15hLK1
m

2pg
lnS r

a0
D1••• . ~45!

We also will assume that, far from the origin, the spaci
profile is flat and equal to the average spacing so

lim
urWu→`

^h~rW !&15^h̄&, ~46!

with ^h̄& the thermal average of the mean spacingh̄. The
first condition is the pinning constraint applied to the edge
the LK complex plus the requirement that forr .a0 the
height profile must be that of a single LK molecule. Th
second reflects the requirement that the effects of a mole
at the origin will be screened at large distances. From
~28! we find that

g¹2^h~rW !&152p1r~rW !1md~rW !, ~47!
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with

r~rW ![mK (
i 52

M

d~rW2RW i !L ~48!

proportional to the thermally averaged density of LK mo
ecules: the ‘‘charge density’’ of the screening cloud in t
electrostatics picture. Using Eq.~29!, the ‘‘charge neutral-
ity’’ condition, we find a normalization condition forr(rW),

E d2r r~rW !

pu2 5pS 12
1

M D . ~49!

Now we assume that the thermally averaged LK density
lows the Boltzmann distribution

r~rW !5pe2DU~rW !/kBT, ~50!

whereDU(rW) is the thermally averaged potential energy c
of moving an LK molecule from infinity torW. On the basis of
our electrostatic analogy~h↔f and m↔q!, we would ex-
pect

DU~rW !5~^h~rW !&12^h̄&!m. ~51!

In the Appendix we show that this indeed is the right choi
The average density profile is then taken to be

r~rW !5p expH 2
m

kBT
@^h~rW !&12^h̄&#J . ~52!

If we linearize the exponential in the expression forr(rW)
in the limit of high temperature and insert this into Eq.~47!,
we obtain the inhomogeneous differential equation

¹2^h&152S pm

gkBTD ~^h&12^h̄&!. ~53!

The general radially symmetric solution to Eq.~53! is

^h&15AJ0~kr !1BN0~kr !1^h̄&, ~54!

where

k5p~@M #gkBT!21/2 ~55!

is an inverse length andJ0 andN0 are Bessel functions with
A and B integration constants. The quantityk is formally
analogous to the inverse Debye screening length. This is
ter seen in the ‘‘electrostatic’’ language, where Eq.~55! re-
duces to

k25
2p@M #q2

kBT
, ~56!

which is of the form of the usual definition of the Deby
parameter. Note that for coupling constantsq2/kBT of order
one,k21 is of order the LK-LK spacing. For therepulsive
Coulomb plasma, however, correlations decay exponent
l-

t

.

et-

ly

fast for distances large compared tok21, whereas in our
case they decay only as an oscillatory power law prop
tional to cos(kr1f)/r1/2.

To determine the integration constantsA andB, we first
note that

lim
x→0

N0~x!5
2

p
~ ln x1gE2 ln 2!, ~57!

with gE50.577 . . . Euler’s constant. To obey Eq.~45! in the
limit kr !1, we thus must demand that in Eq.~54!

B5
m

4g
. ~58!

Next we must demand that^h(rW)&1 is flat atr 5u. This is the
case if

AJ1~ku!1BN1~ku!50. ~59!

The complete solution for̂h(rW)&1 is then

^h~rW !&15^h̄&1
m

4g H N0~kr !2S N1~ku!

J1~ku! D J0~kr !J .

~60!

The second term of Eq.~60! is the correction to the mea
spacinĝ h̄& introduced by the fixed charge at the origin. W
will examine this correction term, starting from the hig
temperature limit wherek→0 @see Eq.~56!#. If ku!1, we
can setJ0(kr )'1 sincer<u, while for N0(kr ) we can use
Eq. ~57!:

^h~rW !&1>^h̄&1
m

2pg
@ ln~kr !1gE2 ln 2#1

m

pg~kr !2 .

~61!

The correction term has a logarithmic profile similar to th
of a single, isolated LK molecule. Note though that f
ku→0 the correction term diverges so the applicability
perturbation theory is suspect. As we increaseku, matters
get even worse. Whenku approaches the first zerox1>3.8
of the J1 Bessel function, the correction term in Eq.~60!
mathematically diverges. We must conclude that forku
>3.8, the uniform state is unstable. This is a very sev
constraint. Using Eq.~56! we can write the unstable range a

q2

kBT
>

7.2

M
. ~62!

Apparently, in the thermodynamic limitM→` the uniform
state is unstablefor any fixed valueof the coupling constan
q2/kBT. We will investigate in Sec. VI what happens fo
finite values ofq2/kBT. It is, however, still useful to com-
pute the free energy using the DH method. This is done
demanding that̂ h(urWu5a0)&15hLK in Eq. ~60!. This re-
quirement fixes the mean spacing^h̄&:

^h̄&>hLK2
m

2pg
$ ln~ka0!1gE2 ln 2%1

m

4g

N1~ku!

J1~ku!
.

~63!

Inserting Eq.~63! into Eq. ~32! gives the internal energy
Eint5^H int* &:
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Eint

pu2 5p~hglyc2hLK !1
mp

4pg
$ ln~ka0!1gE2 ln 2%

2
mp

8g S N1~ku!

J1~ku! D . ~64!

The second and third terms represent the contribution toEint
from correlations. Note the divergence whenku>3.8. In
electrostatic language, we can write Eq.~64! as an energy pe
particle:

Eint

M
5

q2

4
ln~@M #a0

2!1
q2

2 H 1

2
lnS 2pq2

kBT
D 1gE2 ln 2J

2
p

2
q2

N1SA2Mq2

kBT
D

J1SA2Mq2

kBT
D , ~65!

dropping the trivial term in Eq.~64!. Equation~65! has ex-
actly the right general form required by Eq.~40!. Because
the last term depends explicitly onM , there is in general no
well-defined energy per particle in the thermodynamic lim
another sign of the instability of the uniform state. Howev
in the high-temperature limit, the last term in Eq.~65! is
inversely proportional toM and it only contributes acon-
stant term, of orderkBT, to Eint , which can be dropped. In
the ku→0 limit we then find a well-defined correlation fre
energy per unit area

F int

pu2 5
p2

4pg@M # H 1

2
lnS p2a0

2

@M #gkBTD 1gE2 ln 22
1

2J .

~66!

The complete DH free energy per unit areaf (@M #) for fixed
M is then

f ~@M # !5kBT@M # ln~@M #a!2
p2

8pg@M #
lnS gkBT

Gp2a0
2 @M # D .

~67!

We will use Eq.~66! as the correlation free energy to stud
the weak-coupling limit.

VI. NUMERICAL SIMULATIONS

We have preformed Monte Carlo numerical simulatio
on the many-body HamiltonianH int* (RW 1 ,...,RW M) of Eq. ~35!.
The aim of the numerical work was threefold:~i! to examine
the regime of finiteq2/kBT values that was not accessible b
the DH method,~ii ! to verify the predictions of the DH
method for the weak-coupling regime, and~iii ! to examine
the validity of the assumption that we could set the Lagra
multipliers m i to be equal tom.

Our first simulations were done with them i values set to
m and the number of LK moleculesM fixed atM525, in a
disk of fixed radius~canonical ensemble!. We used the stan
dard Metropolis algorithm with small random updates~mi-
crosteps! in the successive positions of the particles. Typi
equilibrium configurations are shown in Figs. 4~a!–4~c! in
,
,

s

e

l

which the system had been allowed to equilibrate for 50
sweeps~125 000 updates!. The particle positions in Figs
4~a!–4~c! correspond to dimensionless coupling consta
e2/kBT ~or m2/2pkBT! equal to 0 @Fig. 4~a!#, 0.11 @Fig.
4~b!#, and 0.15@Fig. 4~c!#.

In Fig. 4~a! the particles assume random positions cor
sponding to a dilute two-dimensional gas. In Fig. 4~b! we see
the effect of increased attraction: the LK molecules hav
tendency to cluster and some appear bound in pairs. N
that the density of LK molecules is higher at the edge due
the inverse parabolic single-particle potential of Eq.~35!.
However, if we watch a particular molecule, it will wande
over the whole disk given sufficient time. Finally, in Fig
4~c! a small increase in the coupling constant has led to t
collapse: All particles are collected into a single dense pa
the stress-focused state. The cluster appears to be nearl
mobile and is located at the sample edge for reasons
cussed above. We infer that there is a critical value for
coupling constant, between 0.11 and 0.15, marking a ph
transition between an extended and a localized state of
many-body system.

These results lead us to the following conclusions. F
small but finite values ofq2/kBT, the LK molecules explore
the adhesion disk, but the average concentration has anon-

uniform profile @M #(rW), which is small at the center of th
adhesion disk and large at the edge. This violates the b
assumption of the perturbative DH theory. The collapse
the adhesion molecules aroundq2/kBT>0.15 appears to be
consistent with the theoretical prediction that forq2/kBT
>2, the free energy should be sensitively dependent on
short-distance cutoffa0 for the replusive potential. We do
not know, however, why the collapse happens alrea
around 0.15 rather than 2.

Next we allowed the number of adhesion moleculesM to
vary. A given configuration ofM particles on a disk of ra-
dius u was assigned the probability

FIG. 4. Snapshots of a 25-particle Monte Carlo simulation. T
dimensionless coupling constantq2/kBT equals~a! 0.0, ~b! 0.11,
and ~c! 0.15.
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FIG. 5. Result of Monte Carlo simulations with variable particle number~weak coupling!. The average adhesion disk radiusu is shown
as a function of the tension. The lower dotted curve is the prediction of ideal solution theory~Bell model!. The upper dashed curve include
corrections from DH theory. The data marked1 correspond toq2/kBT50. The deviations from ideal solution theory for largeg are due to
finite-size effects. The data markedL correspond to simulations of the interacting case withp563103kBT/mm3.
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P@$RW j%,M ,u#5Z21F 4pR2/a8

~N2M !! G
2Fpu2/a

M ! Gexp$2~1/kBT!

3@DHel1Hglyc1HLK#%. ~68!

We then varied not only the particle positions, but in th
case also the disk radiusu and the particle numberM . Note
that we cannot specify the coupling constant, which depe
on @M #. Since the LK concentration is self-adjusting, t
system ‘‘chooses’’ its own coupling constant.

The results of our simulation are shown in Fig. 5, whe
we plot the equilibrium disk radiusu* ~in micrometers! as a
function of the tensiong ~in units of kBT/mm2! for fixed
vesicle radiusR510mm. The lower of the two curves is th
u* prediction of Young’s lawu* 5R(2G/g)1/2 with G5GIS
@see Eqs.~8! and ~24!#, that is, neglecting the indirect inter
actions. The data marked by pluses are the result of the s
lation, also neglecting interaction. For smallerg, the agree-
ment between theory and simulation is good, while for la
g theory underestimatesu* systematically. This is due to th
fact that for largeg both the disk radius and the number
LK molecules become small, so finite-size corrections
come important. The average number of LK molecules
our largestg (1.83105kBT/mm2) was approximately 12.36
while for our smallestg (3.53104kBT/mm2) it was 81.8.

Next we turned to the LK coupling. The upper dash
curve is the prediction of DH theory by using Eq.~66!. The
coupling leads to a modest increase in contact area.
increase agrees with our data~marked by diamonds!,
but only for the smaller tensions. At higher tension
finite-size corrections exceed the DH correction~which de-
creases with increasing tension!. We chose a fixed value ofp
~63103kBT/mm3) such that the coupling constant was a
ways small. The largest coupling constant, correspondin
the smallestg data point, was onlyq2/kBT51.4631022.
ds

u-

e

-
r

he

,

to

The grand canonical simulations consisted of up to 53107

updates~microsteps! with measured autocorrelation times
(53103) – (53104) updates.

Finally, we examined the validity of the assumption co
stantm i (m i5m). We performed the check withM fixed ~at
M520,40! and withM self-adjusting, althoughu was fixed
in both cases. We also allowed a range of coupling const
q2/kBT from 1022 to 431021. At every Monte Carlo mi-
crostep we solved the set ofM linear equations@Eq. ~10!# for
the $m i%. Analyzing the distribution of fluctuations, w
found that the standard deviation was substantial, about 2
of the average value, for the weak-coupling regime. The
portant thermodynamic quantity@M #, however, showed only
small deviations from the mean-field~fixed m! prediction.
These results indicate that the fixedm theory could be ques
tioned on this basis, in particular near the collapse transi
where substantial concentration fluctuations are obser
@see Fig. 4~b!#, and more numerical work is necessary.

VII. PHASE DIAGRAM AND CONCLUSION

We will now use the results of the preceding section
construct a phase diagram for adhesion that includes the
fects of correlations. This phase diagram will have the t
siong of the vesicles as the horizontal axis and the disjoin
pressurep as the vertical axis.

The procedure we will follow is similar to the one de
scribed in Sec. II. The free energy is

DF~u!52Gpu212ptu1pg
u4

R2 , ~69!

where
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G5GIS2
F int

pu2 , ~70!

with F int the LK correlation free energy andGIS the ideal-
solution adhesion energy. We must minimizeDF(u) with
respect tou. A finite u minimum is associated with collec
tive adhesion and au50 minimum with separation or mi
croadhesion.

A. Weak-binding regime

We will first establish the phase diagram for the case t
the number of LK moleculesM is small compared to the
available numberN. The unboundL and K molecules act
like a reservoir in chemical equilibrium with the LK mo
ecules~see Sec. III!. Under these conditions, we can use E
~24! for GIS , with M given by Eq.~22!.

We will start in the regime of high tensiong where the
dimensionless coupling constant is small. In that regime,
use the DH correlation free energy~66! in Eq. ~70!:

2G~@M # !.kBT@M # lnS @M #
a

eD
1H kBT lnS 1

@N#2a82D2EBJ @M #

2
p2

8pg@M #
lnS gkBT

Gp2a0
2 @M # D 1pDh,

~71!

whereDh5hglyc2hLK . First minimizingDF with respect to
@M # gives a LK concentration

@M #>@M IS#2
p2

16pkBT@M IS#
lnF @M IS#gkBT

eGp2a0
2 G , ~72!

with @M IS# the LK concentration in the absence of corre
tions „@M IS#5@N#2(a82/a)2eEB /kBT

…. Inserting Eq. ~72!
back into Eq.~71! gives a thresholdpT(g) for separation
whereG50 ~see Sec. II!:

pT~g!>pT
~0!F11

kBT

16pgDh2 lnS @M IS#gkBT

G~pT
0!2a0

2 D G , ~73!

with pT
(0) the separation threshold in the absence of corr

tions given by Eq.~24!. Correlations thusincreasethe adhe-
sive strength since the argument of the logarithm is of or
1/@M # ISa0

2, which is large compared to one. The enhan
ment factor of the threshold pressure is of orderkBT/gDh2,
which grows with decreasingg as 1/g.

As we reduceg, the coupling constantq2/kBT starts to
increase. The adhesion disk should collapse whenq2/kBT52
according to Eq.~42!, or even earlier according to the nu
merical simulations of Sec. VI. Usingq2/kBT52, the transi-
tion should occur whenp5p(g), with

p~g!5@M #A8pgkBT. ~74!

To estimatep(g), we use@M #5@M # IS
t

.

e

-

-

r
-

p~g!'@N#S a82

a D 2

eEB /kBTA8pgkBT, ~75!

in which casep(g)}g1/2.
Although the DH adhesion energy is not to be trusted

finite values of q2/kBT, it is interesting to note tha
]2/]@M #2 acting on2G(@M #) is positive forq2/kBT small,
while aroundq2/kBT of order one,2(]2/]@M #2)G(@M #)
becomes negative. This indicates that the collapse trans
may be signaled by spinodal decomposition.

In the collapsed state, the LK molecules are collected i
single small patch. The collapse will suppress any billowi
out between LK molecules, soh(rW).hLK in the patch, while
the vesicles are spherical. The adhesion energy can the
only weakly dependent ong, so the fracture pressurepT(g)
of the collapsed state is expected to beindependentof g. The
fracture pressure of the collapsed state should be~crudely!
given by Eq.~73! with g replaced throughg0 defined by
pT

(0)'@M # ISA8pg0kBT. The resulting phase diagram wa
shown already in Fig. 1. The saturation tensiong0 is of order
kBT/Dh2.

B. Strong-binding regime

As we increase the LK binding energy, we absorb mo
and more of the adhesion molecules into the adhesion di
Eventually, we exhaust the supply whenM grows to be of
orderN. The condition for this to happen is that@M # IS given
by Eq. ~22! exceedsN/pu2, which is the case if

EB

kBT
> lnS 4aR2

@N#a82u2D . ~76!

The adhesion disk is then in a canonical ensemble withM
'N. The discussion of the phase diagram proceeds along
same lines and the results are qualitatively similar. There
however, a number of quantitative differences: The largg
threshold pressure ispT

(0)'EB /Dha0
2, the enhancement o

the threshold pressure in the collapsed regimeq2/kBT>1 is
of orderEB /gDh2, and the bounding line between weak a
strong coupling isp(g)'g(N/2pR2)1/2 for small g is pro-
portional tog ~rather than tog1/2!.

In summary, our results demonstrate that the ide
solution assumption for the LK molecules, as well as t
assumption of homogeneity for the adhesion disk, is fun
mentally incorrect. No matter how small the coupling co
stantq2/kBT, i.e., no matter how large the membrane te
sion, the adhesion disk is necessarily inhomogeneous
most adhesion molecules clustered around the rim. We
lieve that this organization of the adhesion disk is a gene
phenomenon for the competitive adhesion description e
bodied in the Bell model. For lower tensions, the deviatio
from the noninteracting model are severe. If the tensiong
<kBT/Dh2, then loss of adhesion proceeds via a collaps
state. The collapsed state has an adhesive strength th
enhanced by a factor ofkBT/gDh2 for weak binding and
EB /gDh2 for strong binding. The collapsed state can
viewed as an extreme example of stress focusing.

To apply our results to actual bioadhesion, we need
assign values tog, EB , p, R, and @N#. Starting with the
distinction between weak and strong binding, measured
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ues of EB /kBT for adhesion molecules range from
~selectin-carbohydrate binding! to 35 ~biotin-streptavidin! as
discussed in Sec. I. Typical area densities of adhesion m
ecules are about 1/200 Å2 so on a spherical vesicle of radiu
R510mm, there would be of orderN5104 adhesion mol-
ecules. The length of an adhesion molecule is in the ra
100– 200 Å, so the effective reactive areaa82/a should be of
order 100 Å2. For an adhesion disk of radiusu;1 mm, the
weak-binding range is thenEB /kBT<10 according to Eq.
~76!. Both weak and strong binding are thus realistic pos
bilities for vesicle unbinding.

The next question is whether the predicted stress-focu
transition is in a realistic range of parameters. From
phase diagram Fig. 1, one sees that for tensionsg
<kBT/Dh2, the collapsed state is a necessary intermediat
the unbinding scenario of vesicles. White blood cell tensio
have been measured and were found to be in the rang
1022 erg/cm2. Red blood cell tensions are so low that th
could not be measured. If the glycocalix compression is l
than 100 Å, which seems very reasonable since that is
size of the adhesion molecules, theng,kBT/Dh2 and the
collapsed state should indeed be encountered in Fig. 1
increasing the disjoining pressure.

One particularly interesting experiment on vesicle ad
sion was performed by Chiruvoluet al. @27# using biotin-
streptavidin bonding on 500-Å vesicles with about 80 lin
between the vesicles. Usinga5a8520 Å2 and EB /kBT
.30, we should be deep in the strong-binding regime. T
vesicles in the experiment were nominally tensionless so
adhesion disk should be collapsed into a small patch. Op
studies of biotin-streptavidin vesicle aggregation are in go
agreement with this prediction. The disjoining pressurep is
not due to a glycocalix. However, thermal fluctuations p
duce a Helfrich entropic repulsion with a similar effect.
would be interesting to add PEG lipids to these vesic
which could act as an artificial glycocalix.

It is also interesting to speculate on possible biologi
relevance of stress focusing. According to our results, ad
sion molecules are likely to aggregate into a single patch.
killer T cells, adhesion molecules of theT cell surface bond
to partner molecules in the target cells called the major
tocompatibility complex. Once the bond has been est
lished, the adhesion molecules trigger the release of l
agents that destroy the target cell membrane. In the collap
state, the release of lysis agents on a focused section o
target membrane would be considerably more effective
addition, the stress-enhancement factorEB /gDh2 for strong
coupling is order 103 for g;1022 erg/cm2, Dh;10 Å, and
EB /kBT;20. The stress-focused state is thus expected t
far stronger than the homogeneous adhesion disk envis
by Bell and co-workers@10#.

Adhesion in biological tissue in general does not invo
just two cells but rather the coordinated organization of la
numbers of cells and the use of a study of adhesion betw
pairs of cells appears to be limited toin vitro studies. Knowl-
edge concerning adhesion energies between pairs of
can, however, give important insights into the organizat
of cells. In the ‘‘thermodynamic’’ model of cell sorting dur
ing embryogenesis of Steinberg@28# for instance, tissue or
ganization of neural retina cells was found to be based on
hierarchy of cell adhesion energies of the various cells. D
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ferences in cellular adhesion energies are attributed to va
tions in the concentration of the adhesion molecules on
cell surface or in the type of adhesion molecules@29#. In the
present study we have found that the adhesion energy
cell also may be modulated by varying the glycocalix rep
sion or externally applied stresses. Tissue organization
stressed tissue thus could be different from that of unstres
tissue.

A second area of possible biological relevance conce
the early stages of formation of clusters of adhesion m
ecules~such as cadherins! in epithelial cells. Under ordinary
‘‘static’’ conditions these adhesion molecules are usua
connected to the cytoskeleton. However, during the ea
stages of the formation of the adhesive link between t
cells, the adhesion molecules may cluster in groups by
membrane-mediated attraction mechanism discussed in
paper. This clustering could then be followed by the conn
tion to the cytoskeleton. It should be noted that in gene
there are several junctions along the adhesion area betw
two epithelial cells. This could be a natural consequence
the decompositional kinetics of the collapse transition, w
disconnected clusters forming in separate area’s. The aut
however, are not aware of studies of early stages of adhe
links in epithelial cells.

A general problem for the verification of the prediction
of this paper for living cells is presented by the dynamic
nature of adhesive links. After molecular recognition b
tween an adhesion molecule and its ligand, formation of
toskeletal links can, as mentioned, alter the surface energ
Also, at the molecular level, studies of adhesion molecu
under stress demonstrate that they respond in a ti
dependent fashion: The fracture of the link between an
hesion molecule and its ligand also is known to depend
the observation period@30#.
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APPENDIX: MEAN POTENTIAL

To find the potential energyDU of a charge brought in
from infinity to RW , with a fixed charge at the origin, we fi
two charges in place~i 51 at rW50 and i 52 at rW5RW ! and
allow the remaining charges to reach thermal equilibrium.
the limit RW→0, the two charges interact via their ‘‘bare
logarithmic attractive potential@see Eq.~35!# so

DU~RW !'
m2

2pg
lnS uRW u

j
D 1const for uRW u→0. ~A1!

Since the averaged height profile^h(rW)&1 around a single
charge obeys, for smallr ,
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^h~rW !&1'
m

2pg
ln~r /j!1const, ~A2!

we can combine Eqs.~A1! and ~A2! as

DU~RW !'m^h~RW !&11const for uRW u→0. ~A3!

It should be noted though that our mean-field assump
m i5m is questionable when two charges approach clos
To find the large-uRW u limit of dU(RW ), let ^h( jW)&2 be the
spacing profile around the two charges. In the limitRW→`,

^h~rW !&2'^h~rW !&11^h~rW2RW !&12^h& ~A4!

since the ‘‘charge clouds’’ surrounding the two fixed charg
do not mutually deform each other. Inserting Eq.~A4! into
Eq. ~32! gives the internal energyU2(RW ):

U2~RW !.2
g

2 E d2r @¹W ^h~rW !&2#21const ~A5!

.2U11
g

2 E d2r $^h~rW !&1¹2^h~rW2RW !&1
n,

-

a

-

v.
n
y.

s

1^h~rW2RW !&1¹2^h~rW !&1%1const,

with u1 the energy cost of a single charge.
We now note that¹2^h(rW)&1 is strongly peaked at the

position of the charge:

¹2^h~rW !&15
m

g
d~rW !1~regular terms!. ~A6!

Using Eq.~A6! in Eq. ~A5! gives, forR→`,

U2~RW !'2u11m@^h~RW !&12^h̄&#. ~A7!

The constant is determined by the condition thatU2(`)
52U1 . Hence we conclude that

DU~RW !'m@^h~RW !&12^h̄&# for R→`, ~A8!

which is consistent with Eq.~A3!. In the body of the paper
we therefore use the identification

DU~RW !'m@^h~RW !&2^h̄&# ~A9!

for all RW .
–
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